压轴题打卡27:分类讨论有关的二次函数综合问题

如图①,已知抛物线yax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BECE,求四边形BOCE面积的最大值,并求此时E点的坐标.
参考答案:
考点分析:
(1)已知抛物线过AB两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;
(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据MC的坐标可求出CM的距离.然后分三种情况进行讨论:
①当CPPM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过PPQy轴于Q,如果设PMCPx,那么直角三角形CPQCPxOM的长,可根据M的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.
②当CMMP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).
③当CMCP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;
(3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过EEFx轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FOE的横坐标的绝对值,EFE的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BFBOOF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.
解题反思:
本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.
(0)

相关推荐