【收藏版】钢铁冶金行业必备耐火材料基础知识手册
冶金工业所用的耐火材料占整个耐火材料生产的60~70%,而这里面又有65~75%的耐火材料是用于钢铁工业,因此,冶金工业促进了耐火材料工业的发展,同样,耐火材料技术和产品质量的发展,也为冶金技术的发展提供了条件。
今天我们整理了一部分关于冶金行业耐火材料的性能和要求、以及炼钢冶金行业用耐火材料的要求知识点,可以收藏起来随时查看。
耐火材料的分类方法很多。根据其化学性质和成分的不同,耐火材料通常可分力酸性耐火材料(石英、硅砖)、半酸性耐火材料(半硅砖中性耐火材料(铬砖、黏土砖、高铝砖)、碱性耐火材料f镁砖、铬镁砖、镁铝砖、白云石砖、镁砂、白云石及镁质耐火泥)等;耐火材料按耐火度可分为普通耐火材料(耐火度为1582〜1770℃)、高级耐火材料(耐火度为1770〜2000℃)、特级耐火材料(耐火度为2000℃)和超级耐火材料(耐火度大于3000℃);耐火材料按加工制造工艺可分为烧成制品、熔铸制品、不烧制品;耐火材料按用途可分为高炉用、电炉用、转炉用、连铸用、玻璃窑用、水泥窑用等耐火材料;耐火材料按化学矿物组成可分为硅质(硅砖、熔融石英烧制品)、镁质(镁砖、镁铝砖、镁铬砖K碳质(炭砖、石墨砖)、白云石质、锆英石质.特殊耐火材料制品(高纯氧化物制品、难溶化合物制品和高温复合材料)。
根据耐火材料中各种化学成分的含量和其作用,通常将其分为主成分、杂质和外加成分三类。
1
耐火材料中的主成分是指占绝大多数的、对衬料高温性质起决定性作用的化学成分^耐火材料之所以具有优良的抵抗髙温作用的性能,以及许多耐火材料又各具特性,完全或基本上取决于主成分。所以,对耐火材料的主成分,必须予以充分重视。通常,对耐火材料按化学组成分类,以及将许多同材质的耐火材料划分为若干等级,多半是根据其主成分的种类以及其含量多寡而定的。可作为耐火材料主成分的都是具有很高晶格能的高溶点或分解温度很高的单质或化合物。要求它在耐火材料生产或服役过程中能形成稳定的具有优良性能的矿物,在自然界储量较髙而且较易提取与利用。在地壳中分布较多,可作力耐火材料主成分的主要是氧化物。另外,有一些碳化物、氮化物、硅化物和硼化物等,也可作为耐火材料的主成分。
现在,生产使用较广泛的耐火材料中的主成分主要是A12O3、BeO、Cr2O3,MgO、CaO、SiO2、ThO2、TiO2、ZrO2等氧化物和SiC、WC、B4C等碳化物以及Si3N4等氮化物。
2
杂质是指在耐火材料中不同于主成分的含量微少而对耐火材料的抵抗高温性质往往带来危害的化学成分。这种化学成分多是由含主成分的原料中夹带而来的。
耐火材料的杂质中有的是易熔物,有的本身具有很高熔点,但同主成分共存时,却可产生易熔物。故杂质的存在往往对主成分起强的助熔作用。助熔作用虽有时有助于材料的液相烧结,但对材料抵抗高温作用却有严重危害。助熔作用愈强,即由于杂质的存在,系统中开始形成液相的温度愈低,或形成液相量愈多,或随着温度升髙液相量增长速度愈快,以及所形成的液相黏度愈低和润湿性愈好,危害愈严重。例如,若Na2O与SiO2共存,由于开始形成液相的溫度很低,故以SiO2为主成分的耐火材料中,若含有少量即可对其髙温性质带来严重危害。若以SiO3为主成分的耐火材料中分別含有Al2O3和TiO2,虽然Si02-Al2O3与SiO2-TiO2两系统的共熔温度相近,分别为1595℃和1550℃,但在共熔温度下系统内每1%杂质氧化物生成的液相量却差别较大,前者约为后者的1.9倍。而且,隨温度的升髙,此差别更大,如在1600℃下,约为2.3倍。因此,杂质A1203较TiO2对SiO2的熔剂作用强。氧化铝对硅质耐火材料的高温性能危害极大。另外,当杂质与主成分共存时,若生成的液相黏度较低,且随温度升高黏度降低愈快以及润湿性愈好,则对耐火材料的危害愈严重。因此,欲提高耐火材料抵抗高温的性能,必须严格控制杂质的含量。
3
外加成分即外加剂,是在耐火制品生产中为特定目的另外加入的少量成分。如为促进材料中某些物相的形成和转化而加入的矿化剂、为抑制材料中某些物相形成而加入的抑制剂或稳定剂、为促进材料的烧结而加入的助熔剂,等等。总之,在耐火材料生产中,采取加入少量外加剂可在一定程度上改变材料的组成与结构,从而便于生产和使制品获得某种预期特性。但必须注意,切勿因此而严重影响其抵抗高温作用的基本性质。
炼钢对耐火材料的性能要求非常严格,即耐火度要高,高温强度要好,能经受德渣、钢液的侵蚀和剧烈的温度变化,有的还要求在高真空和高温下不挥发或不分解,此外还要求耐火材料的耐磨性。对于耐火制品,除上述要求外,还要求其外形规整,尺寸标准;对某些特殊领域的耐火材料,还要求一些特殊性能,如透气性、导热性、导电性和硬度等。
为了合理使用耐火材料,延长其使用寿命。了解耐火材料的一般性质是十分必要的。
1
耐火材料的化学矿物组成是决定耐火材料的物理性质和工作性能的基本因素。耐火材料的化学组成是指构成耐火材料的化合物,也称化学组成。一般来说,不同的耐火材料具有不同的化学组成,而每一种耐火材料按各个成分的含量多少又可以分为两部分:一部分是占绝大多数的基本成分,另一部分是占少量的杂质成分。耐火材料的主要化学成分是氧化物,通常需要测定的成分有三氧化二铝(Al2O3)、SiO2、CaO、MgO等,对于含碳耐火材料及碳化硅耐火材料来说,碳和碳化硅也是重要的化学成分。杂质的化学成分也是氧化物,如Fe2O3、K2O等。表1所示为各种耐火材料的主要化学组成。
表1 各种耐火材料的主要化学组成
2
耐火材料是矿物组成体。耐火产品的性质是其矿物组成和结构的综合反映&耐火材料中原料及制品所含矿物相种类和数量,统称为矿物组成。耐火材科组成中可分为主晶和基质两类。如黏土质耐火材料的主晶为莫来石(3Al2O3·2SiO2),高铝砖是莫来石和刚玉(A12O3)。
3
A气孔率
气孔率是耐火材料制品中气体的体积占制品体积的百分比,是表示耐火材料或制品致密程度的指标。由于耐火砖制造过程中有水分蒸发,在砖内留下空隙,此外颗粒之间也必然存在空隙,因而在耐火材料内部存在许多大小不一、形状不同的气孔。
B体积密度
单位体积(包括气孔体积在内)的耐火的质量称为体积密度,其单位一般是g/cm3或t/m3。体积密度大的耐火砖,内部很致密,气孔率低,同时抵抗炉渣侵蚀的能力就更强。
C吸水率
吸水率是指填充制品中的全部开口气孔所需水的重量占制品重的百分数。
4
耐火度是指耐火材料在无荷重时抵抗高温下不软化的性能。耐火材料是多种矿物的组合体,不是纯物质,故没有一定的熔点,在受热过程中,熔点低的矿物首先软化进而熔化,随着温度的升髙,高熔点矿物也不断熔化,耐火材料受热软化到一定程度时的温度称为该耐火材料的耐火度。因此,耐火度仅仅表示耐火材料开始熔融软化到一定程度时的温度。
耐火度的表示方法,各国均不同,我国采用的是锥号相当于耐火度十分之一的数字,例如175号锥表示耐火度为1750℃。
应该注意的是,耐火度并不代表耐火材料的实际温度。因为在实际应用中,耐火材料会承受一定的机械强度,故实际使用温度比耐火度低,一般仅作为耐火材料纯度的鉴定指示。
5
所谓荷重软化温度就是耐火制品在高温条件下,承受恒定压负荷条件下发生一定变形的温度。荷重软化温度也称荷重软化点。耐火制品在常温下耐压强度很高,但在髙温下承受载荷后就会发生变形,耐压强度就显著降低。这是因为耐火材料内部易熔成分过早地熔化成液态,使耐火材料髙温下的耐火强度大大降低。荷重软化温度也是衡量耐火制品髙温结构强度的指标。
耐火材料的实际使用温度比荷重软化温度稍高些,其原因一方面是由于材料实际荷重小于0.2MPa;另一方面是耐火材料在冶金炉内指示单面受热。表2所示为常用耐火材料高温下的结构强度。
表2 常用耐火材料高温下的结构强度
从表2看出,这三种耐火材料中,氧化硅质耐火材料的耐火度与荷重软化开点温度差值最小,说明其高温结构强度好;黏土质的高温结构强度就差些;氧化镁质耐火材料的耐火度虽然很高,可是其高温结构强度却较低,因些实际使用温度仍然不高。
6
耐火材料试样单位面积随的极限承载荷称为耐压强度,单位是MPa。在室温下所测耐压强度为耐火材料的常温耐压强度,它是衡量耐火材料质量的重要指标之一;在高温条件下单位面积上所承受的极限压力称为高温耐压强度。
7
耐火材料及其制品受热膨胀遇冷收缩,这种热胀冷缩是可逆的变化过程,其热胀冷缩的程度取决于材料的矿物组成和温度。耐火材料的热膨胀性可用线胀率和体积胀率来表示,以每升1℃制品的长度或体积的相对增长率为热膨胀性的量度,即用膨胀百分率或体积膨胀百分率表示。
图1 几种耐火材料线膨胀曲线
1-黏土质;2-刚玉质;3-镁质;4-氧化硅质
8
耐火材料及制品的导热能力用导热系数表示,即单位时间、单位温度禅度、单位面积耐火材料试样所通过的热量称为导热系数,也称热导率,单位是W/(m,K)。导热系数愈大,则耐火材料的导热能力愈大,反之导热能力愈小。
影响导热能力的主要因素是化学矿物组成、气孔率及温度。气孔率大,导热能力低。大多数的耐火材料的导热系数随温度升高而增加,但镁质和碳化硅质耐火材料例外。
9
耐火材料在高温下,抵抗熔渣侵蚀的能力称为抗渣性。耐火材料的抗渣性与熔渣的化学性质、工作温度和耐火材料的致密程度有关。熔渣侵蚀是各种冶金炉中耐火材料损坏的主要原因,对耐火材料的侵蚀包括化学侵蚀、物理溶解和机械冲刷三个方面。化学侵蚀是熔渣与耐火材料发生化学反应,其所形成的产物进入德渣,从而改变熔渣的化学成分,同时耐火材料遭受蚀损;物理溶解是指由于化学侵蚀和耐火材料颗粒结合不牢固,固体颗粒溶解于熔渣之中,机械冲刷是指由于熔渣流动,耐火材料中结合力差的固体颗粒被带走或熔于熔渣中。
抗熔渣性对耐火材料有着十分重要的意义,抗熔渣性的影响因素是多方面的。例如,炉内温度在800〜900℃时,炉渣对材料的侵蚀作用不大明显,但温度达到1200〜1400℃以上时,材料的抗渣性就大大降低;其次,熔渣主要分为酸性熔渣和碱性熔渣。含酸性氧化物较多的耐火材料,对酸性炉猹的抵抗能力强,对碱性炉渣的抵抗能力差;反之,碱性耐火材料对碱性炉渣抵抗能力强,对酸性炉渣抵抗能力差;中性耐火材料无论对酸性或碱性炉渣都有较强的抵抗能力。耐火材料的气孔率对熔渣性也有一定的影响,气孔率愈低,则熔渣愈不容易渗入,反应接触面愈小,耐火材料的抗渣性愈好。
10
耐火材料抵抗由于温度急剧变化而不开裂或不剝落的性能称为抗热震稳定性,又称温度急抵抗性,或耐急冷热性。耐火材料经常处于温度急剧变化状态下作业,由于耐火材料的导热性差,材料内部会产生应力,当应力超过材料的结构强度极限时就会产生裂纹或剥落。因此,抗热震稳定性也是耐火材料的重要性质之一。影响耐火材料抗热震稳定性的因素很多,不易测量,也无法用公式:计算。我国通用的试验方法是将标准砖一端在炉内加热到850℃以后再放入流动冷水中冷却,如此反复进行,直到试样损失重量达20%-50%为止。对于不能在水中冷却的耐火材料,可用强制通风冷却的条件试验。可见,抗热震稳定性是一个相对的指标。
11
耐火砖在烧成过程中,其物理化学变化往往没有进行完结。在高温使用过程中,某些物理化学变化仍然继续进行。其结果使耐火砖的体积发4:收缩或膨胀,通常称为残存收缩或膨胀。它与一般的热胀冷缩有区別,热胀冷缩的体积变化是可逆的,而残存收缩或膨胀是不可逆的。在使用过程中,黏土质、高铝砖等多数耐火砖发生残存收缩变化,而硅砖则因有晶形转变而发生残存膨胀。只有碳质品的高温体积稳定性良好。
炼钢的冶炼条件复杂,对耐火材料的要求也非常严格,对耐火材料的性能有以下几方面要求:
(1)抵抗高温热负荷作用,不软化,不熔融。要求耐火材料具有相当高的耐火度。
(2)抵抗高温热负荷作用,体积不收缩和仅有均匀膨胀。要求材料具有髙的体积稳定性,残存收缩及残存膨胀要小,无晶型转变及严重体积效应。
(3)抵抗髙温热负荷和重负荷的共同作用,不丧失强度f不发生蠕变和坍塌^要求材料具有相当髙的常温强度和高温热态强度,高的荷重软化温度,髙的抗蟥变性^
(4)抵抗温度急剧变化或受热不均影响,不开裂,不剥落。要求材料具有好的抗热震稳定性。
(5)抵抗熔融液、尘和气的化学侵蚀,不变质,不蚀损。要求材料具有良好的抗渣性。
(6)抵抗火焰和炉料、料尘的冲刷、撞击和磨损,表面不损耗。要求材料具有相当高的密实性和常温、高温的耐磨性。
(7)抵抗高温真空作业和气氛变动的影响,不挥发,不损坏。要求材料具有低的蒸气压和高的化学稳定性。
另外,为了保证由块状耐火材料樹筑成的构筑物或内衬的整体质量,抗瘇性和气密性好,并便于施工,还要求材料外形整齐,尺寸准确,保证一定的公差,并杜绝不允许存在的缺陷。为了承受搬运中撞击及可能发生的机械振动与挤压,要求材料必须具有相当高的常温强度。对有些特殊要求之处,有时还要考虑其导热性和导电性。
应该注意,虽然上述各点可作力评价耐火材料质量的侬据,但是没有任何一种耐火材料能够完全满足所有上述要求。在选择或评价耐火材料时,必须使材料的突出特性与使用条件相适应,物尽其用,同时又考虑经济效益。