世界上只有一种投资是只赚不赔的,那就是学习!人生无捷径,坚守成大器!我用心,爱如电!
变压器油在电场作用下引起的能量损耗,称为油的介质损耗,通常在规定的条件下测量变压器油的损耗,并以介质损失角正切tgδ表示。测量绝缘油的介质损失角正切,能灵敏地反映绝缘油在电场、氧化、日照、高温等因素作用下的老化程度,也能灵敏地发现绝缘油中含有水分、或混入其他杂质时,所生成的极性杂质和带电胶体物质逐渐增多等现象。因此,绝缘油的tgδ试验是一项重要的电气特性试验。变压器油的介质损耗可以用下式表示:由上式可知,油的介质损耗因数正比于电导系数γ,因此分析油介损超标或有大的增长趋势的原因,也应主要从分析绝缘油的电导系数γ变化情况入手。变压器在出厂前残油或固体绝缘材料中存在着溶胶杂质,在安装过程中可能再一次浸入溶胶杂质(如采用了黑色橡胶管等),在运行中还可能产生溶胶杂质。根据调查,原变压器油运行一段时间以后出现油介损增大的原因,主要是由于变压器原油生产厂家对油品的管理混乱,变压器残油回收利用不当,致使含有溶胶杂质的变压器残油混入变压器原油中。油中存在溶胶后,引起电导系数可能超过介质正常电导的几倍或几十倍,从而导致油tgδ值增大。油质老化将引起油中酸值的增大、油的粘度减小、界面张力的减小等。但目前油介损偏大的变压器,绝大多数是运行时间不长的变压器,由老化引起油介损升高比较少见。微生物细菌感染主要是在安装和大修中苍蝇、蚊子和细菌类生物浸入所造成的。由于污染所致,在油中含有水、空气、炭化物、有机物、各种矿物质及微细量元素,因而构成了菌类生物生长、代谢、繁殖的基础条件。变压器运行时的油温,适合这些微生物的生长,故温度对油中微生物的生长及油的性能影响很大,一般冬季的介质损耗因数比较稳定。由于微生物都含有丰富的蛋白质其本身就有胶体性质,因此,微生物对油的污染实际是一种微生物胶体的污染,而微生物胶体都带有电荷,影响油的电导增大,所以电导损耗也增大。判断变压器油介损增大是否是由于这种原因而引起,可以通过油中的生物化验来确定。油温在50~70℃范围内运行,介损相对增加比较快。对于纯净的油来说,当油中含水量较低(如30~40μg/L)时,对油的tgδ值的影响不大,只是当油中含水量较高时才有十分显著的影响。当油中含水量大于60μg/L时,其介质损耗因数急剧增加。从变压器制造结构上分析,目前有的变压器制造厂家取消了净油器(热虹吸器),从变压器减少渗漏油角度考虑,减少了渗漏油点。尽管目前变压器油是通过油枕内的胶囊或隔膜与外界空气是隔绝的,可以说是全密封变压器,但是笔者认为取消净油器(热虹吸器),对变压器油介损的增大有一定的影响,或者说变压器上装有净油器(热虹吸器)更有利于绝缘油质量的稳定,可以在变压器运行过程中“吸出”绝缘内部水分,改善绝缘的电气性能,从而减缓了绝缘中水分的增加。因此,对没有安装净油器(热虹吸器)的变压器油介损增大,这可能是其中一个原因之一。目前有些互感器介损超标或增大,有一个很重要的原因,是因为有些制造厂家为了缩短绝缘件的干燥时间和刻意减小互感器出厂时的介损值,在工艺上通过提高干燥温度(一般情况下干燥温度为110℃,但有些厂家干燥温度提高到150℃左右)的方法,这样虽然去掉了绝缘件中的凝聚水和吸附水,但同时也损伤了绝缘件的化学成分,运行一段时间后就会出现油介损增大,而且这种原因引起的油介损增大,很难处理。目前变压器制造厂家对绝缘件的处理是否也采取了刻意提高干燥温度的工艺,至今没有得到证实,因此也无法判断变压器油介损增大是否由此原因而引起,这需要我们在变压器监制阶段对变压器干燥工艺特别留意。如果真是由于变压器内绝缘件的化学成分被损伤而引起变压油介损增大,那只能返厂处理。再生处理是指物理—化学或化学方法除去油中的有害物质,恢复或改善油的理化指标。再生处理的常用方法有:吸附剂法和硫酸—白土法。吸附剂法适合于处理劣化程度较轻的油;硫酸—白土法适合于处理劣化程度较重的油。吸附剂法又可以分为接触法和渗滤法,接触法系采用粉状吸附剂(如白土、801吸附剂等)和油在搅拌接触方式下再生;而渗滤法即强迫油通过装有颗粒状吸附剂(如硅胶、颗粒白土、活化氧化铝等)的净化器,进行渗滤再生处理,这也是我们通常采用的方法。在实际生产和运行中,常遇到下列情况:油经真空、过滤、净化处理后,油的含水量很小,而油的介质损耗因数值较高。这是因为油的介质损耗因数不仅与含水量有关,而且与许多因数有关。从前述的分析中我们可以发现,大多数变压器油介质损耗因数增大的原因是油中可溶性极性质质(如溶胶等)增加所致。对于溶胶粒子,其直径在10-9~10-7m之间,能通过滤纸,所以经二级真空滤油机处理其介质损耗因数不能达到目的,因此处理由这种原因引起的油介损增大问题,通常采用渗滤法再生处理可以得到良好的效果,具体的程序和工艺要求如下。在现场进行变压器油介损处理时,需要准备的工器具有:先将油枕内的油放完,继续放本体油,在放油的同时用干燥空气或氮气跟进,以免变压器绝缘受潮。当油放至变压器拱顶100mm左右时停止放油。取本体油样做介质损耗试验,作为变压器油处理前的基准值。按常规的变压器真空滤油工艺联结好管道,开启真空滤油机。在变压器油加热过滤时要求滤油机出口的温度控制在60~65℃,每两小时记录滤油机出口温度、本体温度、过滤器压力值,当过滤器压力过大时,应该更换过滤器滤芯。当本体温度达到50℃左右时(目的是为了将粘浮在器身上的高介损物质带出),开启所有潜油泵运行0.5h后,关闭潜油泵(注意,潜油泵开启同时,不得开启冷却器风扇),再继续加热滤油8h,取油样做介损试验,并记录。然后把变压器内所有的油抽注入油坦克中,注意在抽油时,变压器本体同时注入干燥空气或氮气,待抽完本体所有油后,要求变压器器身内干燥空气或氮气的压力保持在0.02MPa左右。在油介损处理前把所有的联接管道用新油彻底地再处理一次,按图2所示联结好所有管道。在贮油罐中通过油介损处理罐、过滤器将油温加热到65℃左右循环处理,每4h取油样做介损试验,当介损值降低到理想值后继续循环4h,取样化验介损值、微水、油电气强度。结束油介损处理,开始准备往本体注油。220kV景芳变投运前发现1、2号主变压器油介损偏大,后按照上述处理程序和工艺要求进行处理,主变油介损值获得了较好的处理结果,具体处理前后的比较如表1。而110kV望江变电站1号主变油介损超标采用了更换绝缘油的处理办法。由于受天气、停电时间等因数影响,再加上变压器器身内所有绝缘件经长时间运行后,吸入绝缘件内的油已经得到饱和,因此采用更换绝缘油的方法,不能把绝缘件内的油进行彻底更换,运行一段时间后,随着冷热油的不断循环,绝缘件中介损较大的残油又混入新油中,最后导致新油的介损增大。可见,在现场采用更换绝缘油的方法来降低介损,并不一定合适。宜把原介损高的变压器油处理合格,放尽残油后,再进行提油,最好是把变压器运到制造厂,对器身再经过煤油气相干燥、烘干、抽真空等工序处理。处理前后主变油介损的变化见表2。1、引起油介损原因很多,不同原因引起介损增大应采取不同方法处理。2、现场采用渗滤法处理油介损是解决此问题的有效方法之一。