阿尔茨海默病真的是3型糖尿病吗?(二)
在上个世纪中叶,人们注意到糖尿病和痴呆症之间的关系。1995年,《医学假说》(Medical Hypothesis)杂志中的一篇文章提出,糖尿病和阿尔茨海默病(AD)可能具有共同的病理生理机制。今天,人们普遍认为,这两种疾病之间存在着相互作用、协同作用的重叠机制。最近,研究人员甚至认为AD是一种大脑糖尿病,称之为3型糖尿病。
内分泌网(endocrineweb)官网10月26日信息
阿尔茨海默病和糖尿病之间有什么关系?
在上世纪90年代,基于前瞻性人群研究的鹿特丹研究(Rotterdam study)发表的数据表明,糖尿病人患痴呆症的几率几乎是非糖尿病老年匹配对照组的两倍(OR1.9,95%CI 1.2-3.1)。
糖尿病患者通常会出现认知功能受损、思维灵活性下降、皮质萎缩和神经元丢失。在1型糖尿病(T1D)患者中也观察到了这些认知障碍,这强烈表明,不是2型糖尿病(T2D)的常见合并症(年龄、体重或高血压),而是糖尿病是痴呆症的根源并与迟发性阿尔茨海默病(late-onset AD,LOAD)有潜在关联。应当记住,痴呆是一系列认知障碍的描述,而AD是最常见的痴呆类型。在患有迟发性阿尔茨海默病(LOAD)的患者中,已经观察到将近80%的患者患有T2D或血糖水平异常。
近80%的阿尔茨海默病患者有胰岛素抵抗或2型糖尿病
糖尿病和AD都表现出不溶性淀粉样蛋白的细胞外积累。在AD中,β-淀粉样蛋白(Aβ)是一种从淀粉样前体蛋白(APP)切割出来的有毒肽,聚集在皮质和海马区域以及神经血管系统中。在大多数T2D患者中,可以发现胰腺胰岛细胞聚集,这会导致b细胞体积的损失。这些聚集体包含胰岛淀粉样多肽(islet amyloid polypeptide,IAPP)或胰淀素(amylin)。
在这篇综述中,我们着眼于T2D和阿尔茨海默病之间的关系,旨在研究糖尿病是否会导致周围病理以阿尔茨海默病的形式导致中枢神经系统病理,或者阿尔茨海默病是否是大脑胰岛素抵抗的结果或导致大脑胰岛素抵抗的中枢性疾病。
胰岛素和大脑
大脑的能量需求不成比例,如果不满足,则会导致神经元丢失和脑萎缩。但是,胰岛素在中枢神经系统(CNS)中的主要作用可能不涉及能量获取。
葡萄糖使用在神经血管内皮细胞和星形胶质细胞上表达的非胰岛素依赖性GLUT1转运蛋白穿越血脑屏障。神经元通过同样不依赖胰岛素的GLUT3转运蛋白的作用从星形胶质细胞接收葡萄糖。GLUT1和GLUT3都在AD大脑的皮质和海马区显着减少。但是,由于这些转运蛋白在没有胰岛素的情况下起作用,因此即使在与T2D相关时,它也可能在痴呆症的发生中发挥不同的作用。
目前尚不清楚胰岛素是如何进入大脑的,但是它很可能遵循血脑屏障的浓度梯度,在那里脑脊液(CSF)的胰岛素浓度比血浆低10-20倍。胰岛素一旦进入大脑,就会与其受体结合,可以在嗅球、皮层和海马中以最高密度发现其受体。对AD脑的研究发现胰岛素结合不足,提示在这些区域其受体丧失或受体结合减少。胰岛素和受体之间的相互作用激活了神经调节通路,最终促进了突触可塑性,神经发生和细胞凋亡。
未完待续
参考文献
Source:endocrineweb
Is Alzheimer’s Disease Really Type 3 Diabetes?
References:
Kroner Z. The relationship between Alzheimer's disease and diabetes: Type 3 diabetes? Altern Med Rev. 2009;14(4):373-379. https://www.ncbi.nlm.nih.gov/pubmed/20030463
Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J Alzheimers Dis. 2005;7(1):63-80. https://www.ncbi.nlm.nih.gov/pubmed/15750215
Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia. 1996;39(11):1392-1397. https://www.ncbi.nlm.nih.gov/pubmed/8933010
Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology. 1999;53(9):1937-1942. https://www.ncbi.nlm.nih.gov/pubmed/10599761
Craft S, Asthana S, Cook DG, et al. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer's disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology. 2003;28(6):809-822. https://www.ncbi.nlm.nih.gov/pubmed/12812866
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3 Diabetes and Its Role Implications in Alzheimer's Disease. International journal of molecular sciences. 2020;21(9). https://www.ncbi.nlm.nih.gov/pubmed/32365816
Nguyen TT, Ta QTH, Nguyen TTD, Le TT, Vo VG. Role of Insulin Resistance in the Alzheimer's Disease Progression. Neurochem Res. 2020;45(7):1481-1491. https://www.ncbi.nlm.nih.gov/pubmed/32314178
Gray SM, Meijer RI, Barrett EJ. Insulin regulates brain function, but how does it get there? Diabetes. 2014;63(12):3992-3997. https://www.ncbi.nlm.nih.gov/pubmed/25414013
Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch. 2020;472(9):1299-1343. https://www.ncbi.nlm.nih.gov/pubmed/32789766
Rhea EM, Raber J, Banks WA. ApoE and cerebral insulin: Trafficking, receptors, and resistance. Neurobiol Dis. 2020;137:104755. https://www.ncbi.nlm.nih.gov/pubmed/31978603
Aljanabi NM, Mamtani S, Al-Ghuraibawi MMH, Yadav S, Nasr L. Alzheimer's and Hyperglycemia: Role of the Insulin Signaling Pathway and GSK-3 Inhibition in Paving a Path to Dementia. Cureus. 2020;12(2):e6885. https://www.ncbi.nlm.nih.gov/pubmed/32190448
Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100(7):4162-4167. https://www.ncbi.nlm.nih.gov/pubmed/12634421
Ling X, Martins RN, Racchi M, Craft S, Helmerhorst E. Amyloid beta antagonizes insulin promoted secretion of the amyloid beta protein precursor. J Alzheimers Dis. 2002;4(5):369-374. https://www.ncbi.nlm.nih.gov/pubmed/12446969
Norwitz NG, Mota AS, Norwitz SG, Clarke K. Multi-Loop Model of Alzheimer Disease: An Integrated Perspective on the Wnt/GSK3beta, alpha-Synuclein, and Type 3 Diabetes Hypotheses. Front Aging Neurosci. 2019;11:184. https://www.ncbi.nlm.nih.gov/pubmed/31417394
Potter H, Wisniewski T. Apolipoprotein e: essential catalyst of the Alzheimer amyloid cascade. Int J Alzheimers Dis. 2012;2012:489428. https://www.ncbi.nlm.nih.gov/pubmed/22844635
Weinstein G, Davis-Plourde KL, Conner S, et al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer's disease: Pooled analysis from 5 cohorts. PLoS One. 2019;14(2):e0212293. https://www.ncbi.nlm.nih.gov/pubmed/30768625
Reger MA, Watson GS, Frey WH, 2nd, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451-458. https://www.ncbi.nlm.nih.gov/pubmed/15964100
Reger MA, Watson GS, Green PS, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323-331. https://www.ncbi.nlm.nih.gov/pubmed/18430999
Reger MA, Watson GS, Green PS, et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008;70(6):440-448. https://www.ncbi.nlm.nih.gov/pubmed/17942819
Correia SC, Santos RX, Carvalho C, et al. Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer's disease and diabetes interrelation. Brain Res. 2012;1441:64-78. https://www.ncbi.nlm.nih.gov/pubmed/22290178