郑勤华:数据驱动的教育评价
近日,由北京师范大学与联合国教科文组织教育信息技术研究所联合主办的“2021全球智慧教育大会”在京举行。在“教育大数据与学习分析”论坛上,北京师范大学教授、互联网教育智能技术及应用国家工程实验室副主任郑勤华作主题报告——《数据驱动的教育评价》。
评价是以学习目标为依据,通过一定的标准和手段对学习活动及其结果给予价值上的判断,即对学习活动及其结果进行测量、分析、评定和指导的过程。
首先,评价发展的第一个要求是素养指向。要能够对学生某一心理特质、学科特质开展评价。通过这套体系对面向21世纪的学生进行评价,包括他们的协作能力、创新能力、批判思维能力等,这也是我们未来评价工作的一个核心方向。
其次,在数据驱动评价过程中,要强调数据的真实性。不是为了评价而评价,为了数据驱动而去驱动,要在伴随式、无感式非切入的状态下,对学生真实客观的数据进行掌握。对这些数据进行掌握后,也期待能够通过数据采集、汇聚、处理、分析后,去回答学校最为关心的学生方方面面的真实评价。
再次,在结果公平方面,会带来很多数据驱动中往往容易忽视的问题,那就是由于所处不同的区域、家庭环境和学校场景中,教和学的环境、时空环境以及教师资源方方面面都存在巨大差异。由于是基于数据的评价,数据往往是冰冷的,如果不能有效地和更多变量及其他要素形成有机整体,那么评价可能会是不公平的。
最后,评价的目的是为了发展。以发展为导向的评价并非对学生做一个简单的价值判断,而是希望通过评价结果干预教学、资源、环境、设施等,共同围绕更好地发展提供评价结果和导向。
以美国的New Model学生评价体系为例,它是通过采集学生在学校的学习过程中方方面面的真实数据,然后把这一系列的真实数据汇聚后建立起来的评价模型。该模型的指向并不是简单的认知结果,而是类似于我国的德、智、体、美、劳。从分析和创造思维、复杂沟通能力、领导力及团队合作能力等角度,建立起对应关系进行相应评价。
二、数据驱动的流程
第一,对数据进行积累汇聚。教育信息化发展到今天,“数据孤岛”现象愈演愈烈,教育信息化从业者们期待有一套技术和方法能够把数据,特别是与学生相关联的方方面面的有效数据进行汇聚。
第二,在数据汇聚基础上,进行模型构建。北京师范大学基础教育大数据应用研究院(以下简称“研究院”)构建了“教育大数据模型”,提出把领域知识和机器学习进行有效结合,包括监测模型、评价模型、诊断模型、预测模型和配置模型。通过这一系列的模型,就可以从教育科学和数据科学两个角度进行融合。
第三,在评价创新方面,包括个性化发展、适应性教学和标准化管理。
此外,研究院还打造一套敏捷建模的工具体系——DMTS。DMTS是人机增强智能支持下的敏捷模型引擎。DMTS平台通过建立协同机制,充分发挥人机协同、领域协同的力量,平台支持以教育模型构建为核心业务的适应性学习、科学决策、精准管理、区域教育治理,全方位、系统化地有效构建教育模型问题,为教育大数据应用提供支持。DMTS在教育大数据生态体系中位于中间层,底层是大数据平台,上一层是基于建模之后的应用体系。
三、人机协同时代的智能素养
未来,人工智能时代要培养人们人机协同的能力。我们将其定位为智能素养,包括知识、能力、思维、应用、态度等维度,不论是教育工作者,还是心理学工作者等,都能从中提炼出有价值的信息。
从理论模型到指标体系,其核心就是在教和学的场景中学生产生的方方面面的数据。下一步,就是进行数据采集,以大数据平台为支撑,汇聚和筛选数据,建立符合建模规则的数据集。在平台层面,教育学方面的专家或者教师可以围绕数据,选择拖拽方式,实现对应关系,并根据参数估计的结果,形成稳定的算法模型。
最后是形成支持发展的评价结果,对学者的智能素养进行介绍,整体水平进行诊断,并形成预警、监测、诊断等一套模式。
总体而言,数据驱动是理论和技术不断迭代的过程,需要根据需求去设计理论模型,然后采集相应数据展开智能分析,形成素养指标及相应算法,实现数据驱动教育评价的目标。