基于Buck-Boost变换器的磷酸铁锂电池串联电压均衡优化策略
同济大学电气工程系的研究人员李锐华、李冀、胡波、胡浩,在2018年第3期《电气技术》杂志上撰文,针对磷酸铁锂电池串联应用中,由于单体电池之间存在不一致从而导致蓄电池组利用率和使用寿命降低的问题,本文提出一种基于非能耗型电压均衡方式的复合式电路拓扑,该均衡电路在传统单体电池均衡电路的基础上,加入电池组间均衡电路进行拓扑优化,以提高电压均衡速度。
通过对蓄电池组均衡优化策略进行仿真分析验证,结果表明:与传统单一电压均衡电路相比,该优化策略控制简单、易于实现,在静态和充放电状态下,电池电压均衡速度都有明显提升,并且能有效避免电池组过充电或过放电现象,从而提高电池的使用寿命。
近年来,锂离子电池作为蓄电池的一种,凭借其在功率、效率、安全性、使用寿命等方面的优越性,在电动汽车、分布式发电等领域已经得到了深入研究和广泛应用[1,2]。但在实际应用中,通常需要将几十个甚至是上百个锂离子电池串联使用,才能达到系统供能和电压的要求。
然而锂离子电池种类繁多,即便是同一类型的锂离子电池,不同单体电池内阻、容量等性质依旧存在差异,这些差异随着使用时间增加而不断扩大,形成电池组的不一致性,最终引发电池组中单体电池过充电或过放电,缩短电池组使用寿命,甚至威胁电池组的安全运行[3,4]。因此,在实际使用锂离子电池组时,需要对电池组采用均衡控制,减小不一致性所带来的影响,以提高电池组的利用率和使用寿命。
目前,针对电池组均衡控制已经进行了较为深入的研究。文献[5]从均衡电路设计、均衡速度和成本等方面,对比分析了多种电池串联均衡策略的优缺点,为实际应用中选择均衡策略提供思路。
文献[6,7]提出电池串联应用多目标均衡策略,在整体上同时均衡荷电状态(State of Charge,SOC)、电池温度、电池衰减率等目标,但SOC和温度高度耦合,两者均衡程度相互制约,影响整体均衡效果。
文献[8]采用电池串联电压均衡策略,引入模糊逻辑控制,从而实现均衡电路的PWM控制,但均衡策略中的模糊控制需要积累丰富的先验知识(经验),相应隶属函数的确定较为困难,在一定程度上限制了其应用。
文献[9]提出一种考虑电池温度影响的SOC均衡策略,该均衡电路采用被动式均衡方法,通过分流电阻消耗单体电池能量以实现均衡,缺点是能量浪费较多,均衡耗时较长。文献[10,11]则采用主动式均衡电路进行电池组SOC均衡,该均衡电路含有多个变压器,增加均衡电路的复杂度,且未考虑变压器漏磁通带来的温升对SOC均衡效果的影响。
文献[12]的均衡电路采用PFM控制的电压均衡策略,均衡效果较好,但一个开关周期内只有电压最高的单体电池放电,导致能量传递较少,均衡速度较慢。
综上所述,目前已有的均衡方案中,多目标均衡方案能够从整体上实现SOC、电池温度等目标的均衡,缺点是各均衡目标之间控制关系复杂,方案实现较为困难。单目标均衡方案虽然只能体现SOC或单体电池端电压的均衡效果,但均衡电路和控制策略相对简单、易于实现,更具有适用性。
综合考虑两种均衡方案的优缺点,为同时优化电池组的均衡速度和均衡效果,本文提出一种基于非能耗型电压均衡优化策略,该均衡电路结构简单,能实现电压快速均衡,并且有效避免电池组过充电和过放电,有利于提高电池组使用寿命。
图7均衡电路仿真模型
结论
本文提出一种基于复合式拓扑的电池串联快速电压均衡策略,并进行仿真分析验证,从上述结果得出以下结论:
(1)复合式均衡电路需要对两个子均衡电路同时进行控制,能达到良好的均衡效果,并且电路拓扑较简单,无需过多的开关管,成本较低;
(2)通过三种工况下的对比可以得到,采用电压均衡优化策略的均衡速度明显比未采用优化均衡策略的均衡速度快;
(3)静态均衡结束后,复合式均衡电路的电池组电压值更高,表明该优化策略下电池组能量损耗较少,电池串联均衡后的单体电池电压外特性更好,保证电池组静置后的可靠运行,提高其使用率;
(4)根据带载放电均衡和充电均衡的仿真结果可知,充放电过程中,传统单一均衡电路无法及时完成电池串联的电压均衡,而复合式均衡电路能实现不同电池的电压快速均衡,并能在放电停止或充电结束前保持单体电池电压一致,减少均衡过程中的能量损耗,有效防止电池组的过充电或过放电,有利于提高电池组的利用率和使用寿命。