2020年中考冲刺专题——NO.3 规律探究性问题
难点突破
着眼思路,方法点拨, 疑难突破
1.解数式规律型问题的一般方法
(1)当所给的一组数是整数时,先观察这组数字是自然数列、正数列、奇数列、偶数列还是正整数列经过平方、平方加1或减1等运算后的数列,然后再看这组数字的符号,判断数字符号的正负是交替出现还是只出现一种符号,最后把数字规律和符号规律结合起来从而得到结果;
(2)当数字是分数和整数结合时,先把这组数据的所有整数写成分数,然后分别推断出分子和分母的规律,最后得到该组第n项的规律;
(3)当所给的代数式含有系数时,先观察其每一项的系数之间是否有自然数列、正整数列、奇数列、偶数列或交替存在一定的对称性,然后观察其指数是否存在相似的规律,最后将系数和指数的规律结合起来求得结果.
数字循环类规律题就是几个数循环出现,解决此类问题时,一般是先求出前几个数,再观察其中隐含的规律,若和序号有关,则第n个数用含n的式子表示,用n除以循环出现的数的个数,找出余数即可找到对应的结果.
2.探索等式规律的一般步骤
(1)标序数;
(2)对比式子与序号,即分别比较等式中各部分与序数(1,2,3,4,…,n)之间的关系,把其隐含的规律用含序数的式子表示出来,通常方法是将式子进行拆分,观察式子中数字与序号是否存在倍数或者次方的关系;
(3)根据找出的规律得出第n个等式,并进行检验.
3.根据图形寻找点的坐标的变换特点,这类题目一般有两种考查形式
一类是点的坐标变换在直角坐标系中递推变化;另一类是点的坐标变换在坐标轴上或象限内循环递推变化.解决这类问题可按如下步骤进行:
(1)根据图形点坐标的变换特点确定属于哪一类;
(2)根据图形的变换规律分别求出第1个点,第2个点,第3个点的坐标,找出点的坐标与序号之间的关系,归纳得出第M个点的坐标与变换次数之间的关系;
(3)确定第一类点的坐标的方法:根据(2)中得到的倍分关系,得到第M个点的坐标;确定第二类点坐标的方法:先找出循环一周的变换次数,记为n,用M÷n=ω……q(0≤q<n),则第M次变换与每个循环中第q次变换相同,再根据(2)中得到的第M个点的坐标与变换次数的关系,得到第M个点的坐标.
4.对于求面积规律探索问题的一般步骤
(1)根据题意可得出第一次变换前图形的面积S;
(2)通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,归纳出后一个图形的面积与前一个图形的面积之间存在的倍分关系;
(3)根据找出的规律,即可求出第M次变换后图形的面积.
5.找图形累加型变化规律的一般步骤
(1)写序号,记每组图形的序数为“1,2,3,…n”;
(2)数图形个数,在图形数量变化时,要数出每组图形表示的个数;
(3)寻找图形数量与序数n的关系,若当图形变化规律不明显时,可利用图示法,即针对寻找第n个图形表示的数量时,先将后一个图形的个数与前一个图形的个数进行比对,通常作差(商)来观察是否有恒等量的变化,然后按照定量变化推导出第n个图形的个数.
名师原创
原创检测,关注素养,提炼主题
典例精练
典例精讲,运筹帷幄,举一反三
最新试题
名校直考,巅峰冲刺,一步到位