【必须掌握】污水处理微生物反应原理及影响因素!

一、好氧生物处理的基本生物过程

所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。好氧生物处理过程的生化反应方程式:

①分解反应(又称氧化反应、异化代谢、分解代谢) CHONS +O2 CO2 + H2O + NH3 + SO42- +¼+能量(有机物的组成元素)

②合成反应(也称合成代谢、同化作用) C、H、O、N、S +能量 C5H7NO2

③内源呼吸(也称细胞物质的自身氧化) C5H7NO2 + O2 CO2 + H2O + NH3 + SO42- +¼+能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示:细菌:C5H7NO2;真菌:C16H17NO6;藻类:C5H8NO2;原生动物:C7H14NO3分解与合成的相互关系:1)二者不可分,而是相互依赖的;a、分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b、分解过程是一个产能过程,合成过程则是一个耗能过程。2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的40~50%)。不同形式的有机物被生物降解的历程也不同:一方面:结构简单、小分子、可溶性物质,直接进入细胞壁;结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。另一方面:有机物的化学结构不同,其降解过程也会不同,如:糖类;脂类;蛋白质

二、影响好氧生物处理的主要因素

①溶解氧(DO): 约1~2mg/l;

②水温:是重要因素之一,在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度 15~30°C;>40°C或< 10°C后,会有不利影响。

③营养物质:细胞组成中,C、H、O、N约占90~97%;其余3~10%为无机元素,主要的是P;生活污水一般不需再投加营养物质;而某些工业废水则需要,一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1投加N和P;其它无机营养元素:K、Mg、Ca、S、Na等;微量元素:Fe、Cu、Mn、Mo、Si、硼等;

④pH值:一般好氧微生物的最适宜pH在6.5~8.5之间;pH < 4.5时,真菌将占优势,引起污泥膨胀;另一方面,微生物的活动也会影响混合液的pH值。

⑤有毒物质(抑制物质):重金属;氰化物;H2S;卤族元素及其化合物;酚、醇、醛等;

⑥有机负荷率:污水中的有机物本来是微生物的食物,但太多时,也会不利于微生物;

⑦氧化还原电位:好氧细菌:+300 ~ 400 mV, 至少要求大于+100 mV;厌氧细菌:要求小于+100 mV,对于严格厌氧细菌,则<-100 mV,甚至<-300 mV。

第二节 废水厌氧生物处理原理

废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。

一、厌氧生物处理中的基本生物过程——阶段性理论

1、两阶段理论:20世纪30~60年代,被普遍接受的是“两阶段理论”第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO2和H2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;

这些微生物的特点是:

1)生长速率快,

2)对环境条件的适应性(温度、pH等)强。第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);

产甲烷细菌的主要特点是:

1)生长速率慢,世代时间长;

2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。

2、三阶段理论对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质;厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;上世纪70年代,Bryant发现原来认为是一种被称为“奥氏产甲烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H2(一种产氢产乙酸细菌),另一种细菌则利用H2和CO2产生CH4(一种真正意义上的产甲烷细菌——嗜氢产甲烷细菌);因而,Bryant提出了厌氧消化过程的“三阶段理论”:水解、发酵阶段:产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2;产甲烷阶段:产甲烷菌利用乙酸和H2、CO2产生CH4;一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CO2。

3、四阶段理论(四菌群学说):几乎与Bryant提出“三阶段理论”的同时,又有人提出了厌氧消化过程的“四菌群学说”:实际上,是在上述三阶段理论的基础上,增加了一类细菌——同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2合成为乙酸。但研究表明,实际上这一部分由H2/CO2合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。

4、多阶段理论 但是,当利用厌氧生物处理工艺处理含有复杂有机物的时候,在厌氧反应器中发生的反应会远比上述“三阶段理论”、“四阶段理论”中所描述的反应过程复杂,可以参见“厌氧复杂体系示意图”。

二、厌氧消化过程中的主要微生物

主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。

1、发酵细菌(产酸细菌):

发酵产酸细菌的主要功能有两种:

①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;

②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时回成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。

2、产氢产乙酸菌:产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。

3、产甲烷菌20世纪60年代Hungate开创了严格厌氧微生物培养技术之后,对产甲烷细菌的研究才得以广泛进行;产甲烷细菌的主要功能是将产氢产乙酸菌的产物——乙酸和H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有Methanosarcina(产甲烷八叠球菌)和Methanothrix(产甲烷丝状菌),但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解;根据产甲烷菌的形态和生理生态特征,可将其分类如下:——最新的分类(Bergy’s细菌手册第九版),共分为:三目、七科、十九属、65种;产甲烷菌有各种不同的形态,常见的有:

①产甲烷杆菌;

②产甲烷球菌;

③产甲烷八叠球菌;

④产甲烷丝菌;等等。在生物分类学上,产甲烷菌(Methanogens)属于古细菌(Archaebacteria),大小、外观上与普通细菌(Eubacteria)相似,但实际上,其细胞成分特殊,特别是细胞壁的结构较特殊;在自然界的分布,一般可以认为是栖息于一些极端环境中(如地热泉水、深海火山口、沉积物等),但实际上其分布极为广泛,如污泥、瘤胃、昆虫肠道、湿树木、厌氧反应器等;产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150~-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达4~6天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤。

三、厌氧生物处理的影响因素

产甲烷反应是厌氧消化过程的控制阶段,因此,一般来说,在讨论厌氧生物处理的影响因素时主要讨论影响产甲烷菌的各项因素;主要影响因素有:温度、pH值、氧化还原电位、营养物质、F/M比、有毒物质等。

1、温度:温度对厌氧微生物的影响尤为显著;厌氧细菌可分为嗜热菌(或高温菌)、嗜温菌(中温菌);相应地,厌氧消化分为:高温消化(55°C左右)和中温消化(35°C左右);高温消化的反应速率约为中温消化的1.5~1.9倍,产气率也较高,但气体中甲烷含量较低;当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大),因此可以在常温条件下(20~25°C)进行,以节省能量和运行费用。

2、pH值和碱度:pH值是厌氧消化过程中的最重要的影响因素;重要原因:产甲烷菌对pH值的变化非常敏感,一般认为,其最适pH值范围为6.8~7.2,在<6.5或>8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;厌氧体系中的pH值受多种因素的影响:进水pH值、进水水质(有机物浓度、有机物种类等)、生化反应、酸碱平衡、气固液相间的溶解平衡等;厌氧体系是一个pH值的缓冲体系,主要由碳酸盐体系所控制;一般来说:系统中脂肪酸含量的增加(累积),将消耗 ,使pH下降;但产甲烷菌的作用不但可以消耗脂肪酸,而且还会产生 ,使系统的pH值回升。碱度曾一度在厌氧消化中被认为是一个至关重要的影响因素,但实际上其作用主要是保证厌氧体系具有一定的缓冲能力,维持合适的pH值;厌氧体系一旦发生酸化,则需要很长的时间才能恢复。

3、氧化还原电位:严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;非产甲烷菌可以在氧化还原电位为+100~ -100mv的环境正常生长和活动;产甲烷菌的最适氧化还原电位为-150~ -400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;

4、营养要求:厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:N:P = 200:5:1;

多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:①K、Na、Ca等金属盐类;

②微量元素Ni、Co、Mo、Fe等;

③有机微量物质:酵母浸出膏、生物素、维生素等。

5、F/M比:厌氧生物处理的有机物负荷较好氧生物处理更高,一般可达5~10kgCOD/m3.d,甚至可达50~80 kgCOD/m3.d;无传氧的限制;可以积聚更高的生物量。产酸阶段的反应速率远高于产甲烷阶段,因此必须十分谨慎地选择有机负荷;高的有机容积负荷的前提是高的生物量,而相应较低的污泥负荷;高的有机容积负荷可以缩短HRT,减少反应器容积。

6、有毒物质:——常见的抑制性物质有:硫化物、氨氮、重金属、氰化物及某些有机物;

①硫化物和硫酸盐:硫酸盐和其它硫的氧化物很容易在厌氧消化过程中被还原成硫化物;可溶的硫化物达到一定浓度时,会对厌氧消化过程主要是产甲烷过程产生抑制作用;投加某些金属如Fe可以去除S2-,或从系统中吹脱H2S可以减轻硫化物的抑制作用。

②氨氮:氨氮是厌氧消化的缓冲剂;但浓度过高,则会对厌氧消化过程产生毒害作用;抑制浓度为50~200mg/l,但驯化后,适应能力会得到加强。

③重金属:——使厌氧细菌的酶系统受到破坏。

④氰化物:⑤有毒有机物:

四、厌氧生物处理的主要特征

1、厌氧生物处理过程的主要优点:

①能耗大大降低,而且还可以回收生物能(沼气);

②污泥产量很低;——厌氧微生物的增殖速率比好氧微生物低得多,产酸菌的产率Y为0.15~0.34kgVSS/kgCOD,产甲烷菌的产率Y为0.03kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD。

③厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解;④反应过程较为复杂——厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个连续的微生物过程;

2、厌氧生物处理过程的主要缺点:

①对温度、pH等环境因素较敏感;

②处理出水水质较差,需进一步利用好氧法进行处理;

③气味较大;

④对氨氮的去除效果不好;等等

(0)

相关推荐

  • 综述 | Environ. Microbiol.:海洋沉积物中甲醇的厌氧微生物转化

    编译:微科盟R.A,编辑:微科盟木木夕.江舜尧. 微科盟原创微文,欢迎转发转载. 导读 甲醇是一种无处不在的化合物,它在微生物过程中作为碳和能源,代谢过程的中间产物或发酵的终产物而发挥作用.在缺氧环境 ...

  • 科研 | Microbiome:厌氧条件下产甲烷过程如何进行?

    编译:寒江雪,编辑:小菌菌.江舜尧. 原创微文,欢迎转发转载. 导读 产甲烷过程是一种由复杂的微生物群落介导的生物过程,因为它对全球变暖的贡献和在生物技术中的应用而备受关注.本文利用宏基因组和宏转录组 ...

  • 废水厌氧处理中颗粒污泥的形成与解絮

    甜菊糖属于第三代糖源(甜味剂),因其具备纯天然.高甜度.低热量的特点,受到越来越多的推广和应用,本期我们从颗粒污泥入手并结合甜菊糖生产废水厌氧处理案例,剖析颗粒污泥的形成过程与解絮原因. 甜菊糖生产废 ...

  • 生活垃圾 | 垃圾填埋产生的气体是什么?

    垃圾填埋产生的气体是什么? 炎炎夏日即将来临,随着夏天的到来马路上不仅出现了清凉的短袖.T恤.长裙,马路边的垃圾箱也迎来了不小的挑战,随着温度的升高,垃圾箱里的异味也就会越来越明显,那么我们生活垃圾会 ...

  • 科研 | 在极高浓度二氧化碳下土壤的碳转换过程及微生物组的变化

    本文由郭修诚编译,董小橙.江舜尧编辑. 原创微文,欢迎转发转载. 导读 高浓度CO2对土壤生物群落的影响目前知之甚少.我们研究了一个泛洪平原湿地,此地的温带火山二氧化碳(mofettes)的长期排放与 ...

  • ​污水处理微生物反应原理及影响因素

    第一节 好氧生物处理的过程及因素 一.好氧生物处理的基本生物过程 所谓"好氧":是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物.动 ...

  • 污水处理微生物处理技术,涂山环保

    污水处理微生物处理技术,涂山环保

  • 常见的污水处理植物分类及对污水处理的净化原理!

    水生植物是指生长在水中或潮湿土壤中的植物,包括草本植物和木本植物. 我国水系众多,水生植物资源非常丰富,仅高等水生植物就有300多种. 水生植物叶子能最大限度地得到水里很少能得到的光照,吸收水里溶解得 ...

  • 污水A/O系统生物硝化与反硝化原理及影响因素

    一.硝化反应: 1.在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用. 生物硝化的反应过程为:NH4+ + 2O2 =NO3- + 2H+ + H ...

  • 「干货」污水处理中硝化菌的影响因素

    污泥负荷Ns 硝化细菌更多的还是在伴随着菌胶团的生存,有机物的去除是先进行碳氧氧化,再进行氮氧化.有机物先通过菌胶团分解氧化生成二氧化碳与水,部分作为自身能量消耗.只有有机负荷降低到一定程度,硝化细菌 ...

  • 污水处理中硝化细菌生存的影响因素及控制

    污泥负荷Ns 硝化细菌更多的还是在伴随着菌胶团的生存,有机物的去除是先进行碳氧氧化,再进行氮氧化.有机物先通过菌胶团分解氧化生成二氧化碳与水,部分作为自身能量消耗.只有有机负荷降低到一定程度,硝化细菌 ...

  • 【干货】污水处理中硝化菌的影响因素!

    污泥负荷Ns 硝化细菌更多的还是在伴随着菌胶团的生存,有机物的去除是先进行碳氧氧化,再进行氮氧化.有机物先通过菌胶团分解氧化生成二氧化碳与水,部分作为自身能量消耗.只有有机负荷降低到一定程度,硝化细菌 ...

  • 分享丨微生物抽样原理及抽样操作

    抽样基本原理 抽样是指从目标总体中抽取一部分个体作为样本,通过观察样本的属性对总体的特征得出具有一定可靠性的估计判断,从而达到对总体的认识.科学合理的抽样方案.正确的抽样技术.严谨的样品传递过程.适宜 ...

  • 污水处理微生物图谱|高清版

    污水微生物图谱中根据原后生动物与出水水质关联性将其分为:非活性污泥类微生物和活性污泥类微生物两类.以下为污水处理中常见指标性微生物图谱.(部分高清图片由在印尼污水厂任职的污托邦管理员super张~提供 ...