在矩形ABCD中,AB=4,AD=6,M是AD边的中点,P是射线AB上的一个动点(不与A,B重合),MN⊥PM交射线BC于N点.(2)如图2,在点N的运动过程中,求证:PM/MN为定值;(3)在射线AB上,是否存在点P,使得△DCN∽△PMN?若存在,求此时AP的长;若不存在,请说明理由.(1)先判断出∠APM=∠DMC即可得出△APM∽△DMC,即AP/MD=AM/CD,再求出AM=MD=3,CD=4代入即可;(2)分两种情况①判断出,△APM∽△DMG,和△APM∽△CNG用得出的比例式化简即可得出结论;(3)先求出CN,再用△MDH∽△NCH求出DH,CH,最后用△APM∽△MDH即可求出结论.相似三角形在初中数学当中,一直是非常重要的知识板块,很多疑难压轴题,只要用好相似这一块知识内容,都能顺利解决问题。我们知道,要确定两三角形是否相似,除了图形位置要确定,对应边确定或对应角确定时,更需要把对应点的字母写在对应的位置。若由于对应关系不确定,相关的问题往往就会有多解可能,常常需要我们进行分类讨论,如以相似三角形中对应关系不确定为背景的压轴题一直是中考数学的热点和难点。
▷▷▷▷▷点我领取学习资料◁◁◁◁◁
您也可以登陆学习平台↓
第一中考(www.diyizhongkao.com)
↓点击原文,获取更多学习资料