hashCode和equals的区别
有面试官会问:你重写过 hashcode 和 equals 么,为什么重写equals时必须重写hashCode方法?equals和hashCode都是Object对象中的非final方法,它们设计的目的就是被用来覆盖(override)的,所以在程序设计中还是经常需要处理这两个方法。下面我们一起来看一下,它们到底有什么区别,总结一波!
01、hashCode介绍
hashCode() 的作用是获取哈希码,也称为散列码;它实际上是返回一个int整数。这个哈希码的作用是确定该对象在哈希表中的索引位置。hashCode() 定义在JDK的Object.java中,这就意味着Java中的任何类都包含有hashCode() 函数。
举个例子
通过调用hashCode()方法获取对象的hash值。
02、equals介绍
equals它的作用也是判断两个对象是否相等,如果对象重写了equals()方法,比较两个对象的内容是否相等;如果没有重写,比较两个对象的地址是否相同,价于“==”。同样的,equals()定义在JDK的Object.java中,这就意味着Java中的任何类都包含有equals()函数。
举个例子
03、hashCode() 和 equals() 有什么关系?
接下面,我们讨论另外一个话题。网上很多文章将 hashCode() 和 equals 关联起来,有的讲的不透彻,有误导读者的嫌疑。在这里,我们梳理了一下 “hashCode() 和 equals()的关系”。我们以“类的用途”来将“hashCode() 和 equals()的关系”分2种情况来说明。
3.1、不会创建“类对应的散列表”
这里所说的“不会创建类对应的散列表”是说:我们不会在HashSet, HashTable, HashMap等等这些本质是散列表的数据结构中,用到该类。例如,不会创建该类的HashSet集合。
在这种情况下,该类的“hashCode() 和 equals() ”没有半毛钱关系的!
equals() 用来比较该类的两个对象是否相等,而hashCode() 则根本没有任何作用,所以,不用理会hashCode()。
举个例子
运行结果:
从结果也可以看出:p1和p2相等的情况下,hashCode()也不一定相等。
3.2、会创建“类对应的散列表”
这里所说的“会创建类对应的散列表”是说:我们会在HashSet, HashTable, HashMap等等这些本质是散列表的数据结构中,用到该类。例如,创建该类的HashSet集合。
在这种情况下,该类的“hashCode() 和 equals() ”是有关系的:
如果两个对象相等,那么它们的hashCode()值一定相同。这里的相等是指,通过equals()比较两个对象时返回true。
如果两个对象hashCode()相等,它们并不一定相等。因为在散列表中,hashCode()相等,即两个键值对的哈希值相等。然而哈希值相等,并不一定能得出键值对相等,此时就出现所谓的哈希冲突场景。
举个例子
运行结果:
结果分析:
我们重写了Person的equals()。但是,很奇怪的发现:HashSet中仍然有重复元素:p1 和 p2。为什么会出现这种情况呢?
这是因为虽然p1 和 p2的内容相等,但是它们的hashCode()不等;所以,HashSet在添加p1和p2的时候,认为它们不相等。
举个例子,我们同时覆盖equals() 和 hashCode()方法。
import java.util.HashSet;
public class DemoTest {
public static void main(String[] args) {
// 新建Person对象,
Person p1 = new Person("eee", 100);
Person p2 = new Person("eee", 100);
Person p3 = new Person("aaa", 200);
Person p4 = new Person("EEE", 100); // 新建HashSet对象
HashSet<Person> set = new HashSet<>();
set.add(p1);
set.add(p2);
set.add(p3);
set.add(p4); // 比较p1 和 p2, 并打印它们的hashCode()
System.out.printf("p1.equals(p2) : %s; p1(%d) p2(%d)\n", p1.equals(p2), p1.hashCode(), p2.hashCode());
// 比较p1 和 p4, 并打印它们的hashCode()
System.out.printf("p1.equals(p4) : %s; p1(%d) p4(%d)\n", p1.equals(p4), p1.hashCode(), p4.hashCode()); // 打印set
System.out.printf("set:%s\n", set);
}
private static class Person {
private String name;
private int age;
public Person(String name, int age) {
super();
this.name = name;
this.age = age;
}
/**
* 重写toString方法
*/
@Override
public String toString() {
return "(" + name + ", " + age + ")";
}
/**
* 重写equals方法
*/
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
} // 如果是同一个对象返回true,反之返回false
if (this == obj) {
return true;
} // 判断是否类型相同
if (this.getClass() != obj.getClass()) {
return false;
}
Person person = (Person) obj;
return name.equals(person.name) && age == person.age;
}
/**
* 重写hashCode方法
*/
@Override
public int hashCode() {
int nameHash = name.toUpperCase().hashCode();
return nameHash ^ age;
}
}
}
运行结果:
结果分析:
这下,equals()生效了,HashSet中没有重复元素。 比较p1和p2,我们发现:它们的hashCode()相等,通过equals()比较它们也返回true。所以,p1和p2被视为相等。 比较p1和p4,我们发现:虽然它们的hashCode()相等;但是,通过equals()比较它们返回false。所以,p1和p4被视为不相等。
为什么HashSet会用到hashCode()呢?
查看HashSet的源码部分
......省略
可以看出,hashSet使用的是hashMap的put方法,而hashMap的put方法,使用hashCode()用key作为参数计算出hash值,然后进行比较,如果相同,再通过equals()比较key值是否相同,如果相同,返回同一个对象。
所以,如果类使用再散列表的集合对象中,要判断两个对象是否相同,除了要覆盖equals()之外,也要覆盖hashCode()函数。否则,equals()无效。
04、有哪些覆写hashCode的诀窍
一个好的hashCode的方法的目标:为不相等的对象产生不相等的散列码,同样的,相等的对象必须拥有相等的散列码。
1、把某个非零的常数值,比如17,保存在一个int型的result中;
2、对于每个关键域f(equals方法中设计到的每个域),作以下操作:
a.为该域计算int类型的散列码;
i.如果该域是boolean类型,则计算(f?1:0),ii.如果该域是byte,char,short或者int类型,计算(int)f,iii.如果是long类型,计算(int)(f^(f>>>32)).iv.如果是float类型,计算Float.floatToIntBits(f).v.如果是double类型,计算Double.doubleToLongBits(f),然后再计算long型的hash值vi.如果是对象引用,则递归的调用域的hashCode,如果是更复杂的比较,则需要为这个域计算一个范式,然后针对范式调用hashCode,如果为null,返回0vii. 如果是一个数组,则把每一个元素当成一个单独的域来处理。
b.result = 31 * result + c;
3、返回result
4、编写单元测试验证有没有实现所有相等的实例都有相等的散列码。
给个简单的例子:
@Overridepublic int hashCode() {
int result = 17;
result = 31 * result + name.hashCode();
return result;
}
这里再说下2.b中为什么采用31*result + c
,乘法使hash值依赖于域的顺序,如果没有乘法那么所有顺序不同的字符串String对象都会有一样的hash值,而31是一个奇素数,如果是偶数,并且乘法溢出的话,信息会丢失,31有个很好的特性是31*i ==(i<<5)-i
,即2的5次方减1,虚拟机会优化乘法操作为移位操作的。