RT-PCR实验反应体系优化方法详解汇总
一、增加反应体系的灵敏度:
1. 分离高质量RNA:
成功的cDNA合成来自高质量的RNA。高质量的RNA至少应保证全长并且不含逆转录酶的抑制剂,如EDTA或SDS。RNA的质量决定了你能够转录到 cDNA上的序列信息量的最大值。一般的RNA纯化方法是使用异硫氰酸胍/酸性酚的一步法。为了防止痕量RNase的污染,从富含RNase的样品(如胰脏)中分离到的RNA需要贮存在甲醛中以保存高质量的RNA,对于长期贮存更是如此。从大鼠肝脏中提取的RNA,在水中贮存一个星期就基本降解了,而从大鼠脾脏中提取的RNA,在水中保存3年仍保持稳定。另外,长度大于4kb的转录本对于痕量RNase的降解比小转录本更敏感。为了增加贮存RNA样品的稳定性,可以将RNA溶解在去离子的甲酰胺中,存于-70℃。用于保存RNA的甲酰胺一定不能含有降解RNA的杂物。来源于胰脏的RNA至少可以在甲酰胺中保存一年。当准备使用RNA时,可以使用下列方法沉淀RNA:加入NaCl至0.2M及4倍体积的乙醇,室温放置3-5分钟,10,000×g离心5分钟。
2. 使用无RNaseH活性(RNaseH-)的逆转录酶:
在逆转录反应中经常加入RNase抑制剂以增加cDNA合成的长度和产量。RNase抑制剂要在第一链合成反应中,在缓冲液和还原剂(如DTT)存在的条件下加入,因为cDNA合成前的过程会使抑制剂变性,从而释放结合的可以降解RNA的RNase。蛋白RNase抑制剂仅防止RNase A,B,C对RNA的降解,并不能防止皮肤上的RNase,因此尽管使用了这些抑制剂,也要小心不要从手指上引入RNase。
逆转录酶催化RNA转化成cDNA。不管是M-MLV还是AMV,在本身的聚合酶活性之外,都具有内源RNaseH活性。RNaseH活性同聚合酶活性相互竞争RNA模板与DNA引物或cDNA延伸链间形成的杂合链,并降解RNA:DNA复合物中的RNA链。被RNaseH活性所降解的RNA模板不能再作为合成cDNA的有效底物,降低了cDNA合成的产量和长度。因此消除或大大降低逆转录酶的RNaseH活性将会大有裨益。
SuperScriptⅡ逆转录酶,RNaseH- 的MMLV逆转录酶及thermoScript逆转录酶,RNaseH- 的 AMV,比MMLV和AMV得到更多量和更多全长的cDNA。RT-PCR灵敏度会受cDNA合成量的影响。ThermoScript比AMV的灵敏性强得多。RT-PCR产物的大小受限于逆转录酶合成cDNA的能力,尤其是克隆较大的cDNA时。同MMLV相比,SuperScripⅡ显著提高了长 RT-PCR产物的产量。RNaseH- 的逆转录酶同时增加了热稳定性,所以反应可以在高于正常的37-42℃的温度下进行。在建议的合成条件下,使用oligo(dT)引物和10μCi的 [α-P]dCTP。第一链的总产量使用TCA沉淀法计算。全长cDNA使用在碱性琼脂糖胶上将大小分类的条带切除并计数的方法分析。
3. 提高逆转录保温温度:
较高的保温温度有助于RNA二级结构的打开,增加了反应的产量。对于多数RNA模板,在没有缓冲液或盐的条件下,将RNA和引物在65℃保温,然后迅速置于冰上冷却,可以消除大多数二级结构,从而使引物可以结合。然而某些模板仍然会存在二级结构,即使热变性后也是如此。对这些困难模板的扩增可以使用 ThermoScript逆转录酶,并将逆转录反应置于较高温度下进行以改善扩增。较高的保温温度也可以增加特异性,尤其是当使用基因特异性引物(GSP)进行cDNA合成时(见第三章)。如果使用GSP,确保引物的Tm值与预计的保温温度相同。不要在高于60℃时使用oligo(dT)和随机引物。随机引物需要在增加到60℃前在25℃保温10分钟。除了使用较高的逆转录温度外,还可以通过直接将RNA/引物混合物从65℃变性温度转到逆转录保温温度,并加入预热的2×的反应混合物提高特异性(cDNA热启动合成)。这种方法有助于防止较低温度时所发生的分子间碱基配对。使用PCR仪可以简化 RT-PCR所需的多种温度切换。
Tth热稳定聚合酶在Mg2+存在条件下作为DNA聚合酶,在Mn2+存在条件下作为RNA聚合酶。它可以在最高65℃条件下保温。然而,PCR过程中Mn2+的存在会降低忠实性,这使得Tth 聚合酶不太适合用于高精确度的扩增,如cDNA的克隆。另外,Tth的逆转录效率较低,这会降低灵敏度,而且,既然单个酶就可以进行逆转录和PCR,那么没有逆转录的对照反应就不能用来将cDNA的扩增产物同污染的基因组DNA的扩增产物区分开来。
4. 促进逆转录的添加剂:
包括甘油和DMSO在内的添加剂加到第一链合成反应中,可以减低核酸双链的稳定并解开RNA二级结构,最多可以加入20%的甘油或10%的DMSO而不影响SuperScriptⅡ或MMLV的活性。AMV也可以耐受最多20%的甘油而不降低活性。为了在SuperScriptⅡ逆转录反应中最大限度提高RT-PCR的灵敏度,可以加入10%的甘油并在45℃保温。如果1/10的逆转录反应产物加入到PCR中,那甘油在扩增反应中的浓度为0.4%,这不足以抑制PCR。
5. RNaseH处理:
在PCR之前使用RNaseH处理cDNA合成反应可以提高灵敏度。对于某些模板,据认为cDNA合成反应中的RNA会阻止扩增产物的结合,在这种情况下,RNaseH处理可以增加灵敏度。一般当扩增较长的全长cDNA目标模板时,RNaseH处理是必需的,比如低拷贝的tuberous scherosisⅡ。对这种困难模板,RNaseH的处理加强了SuperScriptⅡ或AMV合成的cDNA所产生的信号。对于多数RT-PCR反应,RNaseH处理是可选的,因为95℃保温的PCR变性步骤一般会将RNA:DNA复合物中的RNA水解掉。
6. 小量RNA检测方法的提高:
当仅有小量RNA时,RT-PCR尤其具有挑战性。在RNA分离过程中加入的作为载体的糖元有助于增加小量样品的产量。可以在加入Trizol的同时加入无RNase的糖元。糖元是水溶性的,可以同RNA保持在水相中以辅助随后的沉淀。对于小于50mg的组织或106个培养细胞的样品,无RNase糖元的建议浓度为250μg/ml。
在使用SuperScriptⅡ的逆转录反应中加入乙酰化BSA可以增加灵敏度,而且对于小量RNA,减少SuperScriptⅡ的量并加入40单位的 RnaseOut核酸酶抑制剂可以提高检测的水平。如果在RNA分离过程中使用了糖元,仍然建议在使用SuperScriptⅡ进行逆转录反应时加入 BSA或RNase抑制剂。
二、增加RT-PCR特异性
1. CNDA合成:
第一链cDNA合成的起始可以使用三种不同的方法,各种方法的相对特异性影响了所合成cDNA的量和种类。
随机引物法是三种方法中特异性最低的。引物在整个转录本的多个位点退火,产生短的,部分长度的cDNA。这种方法经常用于获取5'末端序列及从带有二级结构区域或带有逆转录酶不能复制的终止位点的RNA模板获得cDNA。为了获得最长的cDNA,需要按经验确定每个RNA样品中引物与RNA的比例。随机引物的起始浓度范围为50到250ng每20μl反应体系。因为使用随机引物从总RNA合成的cDNA主要是核糖体RNA,所以模板一般选用 poly(A)+RNA。
Oligo(dT)起始比随机引物特异性高。它同大多数真核细胞mRNA 3'端所发现的poly(A)尾杂交。因为poly(A)+RNA大概占总RNA的1%到2%,所以与使用随机引物相比,cDNA 的数量和复杂度要少得多。因为其较高的特异性,oligo(dT)一般不需要对RNA和引物的比例及poly(A)+选择进行优化。建议每20μl反应体系使用0.5μg oligo(dT)。oligo(dT)12-18适用于多数RT-PCR。ThermoScript RT-PCR System提供了oligo(dT)20,因为其热稳定性较好,适用于较高的保温温度。
基因特异性引物(GSP)对于逆转录步骤是特异性最好的引物。GSP是反义寡聚核苷,可以特异性地同RNA目的序列杂交,而不象随机引物或 oligo(dT)那样同所有RNA退火。用于设计PCR引物的规则同样适用于逆转录反应GSP的设计。GSP可以同与mRNA3'最末端退火的扩增引物序列相同,或GSP可以设计为与反向扩增引物的下游退火。对于部分扩增对象,为了成功进行RT-PCR,需要设计多于一个反义引物,因为目的RNA的二级结构可能会阻止引物结合。建议在20μl的第一链合成反应体系中使用1pmol 反义GSP。
2. 提高逆转录保温温度:
为了充分利用GSP特异性的全部优点,应该使用有较高热稳定性的逆转录酶。热稳定逆转录酶可以在较高温度保温以增加反应严谨性。比如,如果一个GSP退火温度为55℃,那么如果使用AMV或M-MLV在低严谨性的37℃进行逆转录,GSP所带有的特异性就没有完全利用。然而SuperScripⅡ和 ThermoScript可以在50℃或更高进行反应,这就会消除较低温度时产生的非特异性产物。为获得最大的特异性,可以将RNA/引物混合物直接从 65℃变性温度转移到逆转录保温温度,并加入预热的2×反应混合液(cDNA合成热启动)。这有助于防止低温时分子间碱基配对。使用PCR仪可以简化 RT-PCR所需的多种温度转换。
3. 减少基因组DNA污染:
RT-PCR所遇到的一个潜在的困难是RNA中沾染的基因组DNA。使用较好的RNA分离方法,如Trizol Reagent,会减少RNA制备物中沾染的基因组DNA。为了避免产生于基因组DNA的产物,可以在逆转录之前使用扩增级的DNaseⅠ对RNA进行处理以除去沾染的DNA。将样品在2.0mM EDTA中65℃保温10分钟以终止DNaseⅠ消化。EDTA可以螯合镁离子,防止高温时所发生的依赖于镁离子的RNA水解。
为了将扩增的cDNA同沾染的基因组DNA扩增产物分开,可以设计分别同分开的外显子退火的引物。来源于cDNA的PCR产物会比来源于沾染的基因组DNA 的产物短。另外对每个RNA模板进行一个无逆转录的对照实验,以确定一个给定片段是来自基因组DNA还是cDNA。在无逆转录时所得到的PCR产物来源于基因组。
感谢您的关注,祝您科研顺利!