NLP之word2vec:利用 Wikipedia Text(中文维基百科)语料+Word2vec工具来训练简体中文词向量

NLP之word2vec:利用 Wikipedia Text(中文维基百科)语料+Word2vec工具来训练简体中文词向量


输出结果

后期更新……

最后的model
word2vec_wiki.model.rar

设计思路

后期更新……

1、Wikipedia Text语料来源

Wikipedia Text语料来源及其下载:zhwiki dump progress on 20190120

其中zhwiki-latest-pages-articles.xml.bz2文件包含了标题、正文部分。压缩包大概是1.3G,解压后大概是5.7G。相比英文wiki中文的还是小了不少。

2、维基百科的文档解析

下载下来的wiki是XML格式,需要提取其正文内容。不过维基百科的文档解析有不少的成熟工具(例如gensim,wikipedia extractor等。其中Wikipedia Extractor 是一个简单方便的Python脚本。

T1、Wikipedia Extractor工具

Wikipedia extractor的网址: http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
Wikipedia extractor的使用:下载好WikiExtractor.py后直接使用下面的命令运行即可,
                   其中,-cb 1200M表示以 1200M 为单位切分文件,-o 后面接出入文件,最后是输入文件。

WikiExtractor.py -cb 1200M -o extracted zhwiki-latest-pages-articles.xml.bz2

T2、python代码实现

    将这个XML压缩文件转换为txt文件

python process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text 

3、中文的简繁转换

中文wiki内容中大多数是繁体,这需要进行简繁转换。可以采用厦门大学NLP实验室开发的简繁转换工具或者opencc代码实现。

T1、厦门大学NLP实验室开发的简繁转换工具

转换工具下载网址:http://jf.cloudtranslation.cc/
转换工具的使用:下载单机版即可,在windos命令行窗口下使用下面命令行运行
                   其中file1.txt为繁体原文文件,file2.txt为输出转换结果的目标文件名,lm_s2t.txt为语言模型文件。

  jf -fj file1.txt file2.txt -lm lm_s2t.txt

T2、opencc代码实现

opencc -i wiki.zh.text -o wiki.zh.text.jian -c zht2zhs.ini, 将繁体字转换为简体字。

4、将非utf-8格式字符转换为utf-8格式

iconv -c -t UTF-8 < wiki.zh.text.jian.seg > wiki.zh.text.jian.seg.utf-8

5、调用word2vec

python train_word2vec_model.py wiki.zh.text.jian.seg.utf-8 wiki.zh.text.model wiki.zh.text.vector

实现代码

正在更新……

对下边文件代码的说明

#We create word2vec model use wiki Text like this https://dumps.wikimedia.org/zhwiki/20161001/zhwiki-20161001-pages-articles-multistream.xml.bz2

##parameter:
=================================
    feature_size = 500
    content_window = 5
    freq_min_count = 3
    # threads_num = 4
    negative = 3   #best采样使用hierarchical softmax方法(负采样,对常见词有利),不使用negative sampling方法(对罕见词有利)。
    iter = 20

##process.py deal with wiki*.xml

##word2vec_wiki.py : create model and load model

1、process.py文件


#process.py文件
import logging
import os.path
import sys
from gensim.corpora import WikiCorpus

#run python process_wiki.py ../data/zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text
if __name__ == '__main__':
    program = os.path.basename(sys.argv[0])
    logger = logging.getLogger(program)

    logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
    logging.root.setLevel(level=logging.INFO)
    logger.info("running %s" % ' '.join(sys.argv))

    # check and process input arguments
    if len(sys.argv) < 3:
        print(('globals()[__doc__]):', globals()['__doc__']) )
        print('locals:', locals())
        print(globals()['__doc__'] % locals())    #最初代码 print globals()['__doc__'] % locals()
        sys.exit(1)
    inp, outp = sys.argv[1:3]
    space = " "
    i = 0

    output = open(outp, 'w')
    wiki = WikiCorpus(inp, lemmatize=False, dictionary={})
    for text in wiki.get_texts():
        output.write(space.join(text) + "\n")
        i = i + 1
        if (i % 10000 == 0):
            logger.info("Saved " + str(i) + " articles")

    output.close()
    logger.info("Finished Saved " + str(i) + " articles")

2、word2vec_wiki.py文件

#word2vec_wiki.py文件

# -*- coding:utf-8 -*-
from __future__ import print_function
import numpy as np
import os
import sys
import jieba
import time
import jieba.posseg as pseg
import codecs
import multiprocessing
import json
# from gensim.models import Word2Vec,Phrases
from gensim import models,corpora
import logging
# auto_brand = codecs.open("Automotive_Brand.txt", encoding='utf-8').read()

sys.path.append("../../")
sys.path.append("../../langconv/")
sys.path.append("../../parser/")
# import xmlparser
# from xmlparser import *
# from langconv import *

# logger = logging.getLogger(program)
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
# logger.info("running %s" % ' '.join(sys.argv))

def json_dict_from_file(json_file,fieldnames=None,isdelwords=True):
    """
    load json file and generate a new object instance whose __name__ filed
    will be 'inst'
    :param json_file:
    """
    obj_s = []
    with open(json_file) as f:
        for line in f:
            object_dict = json.loads(line)
            if fieldnames==None:
                obj_s.append(object_dict)
            else:
                # for fieldname in fieldname:
                    if set(fieldnames).issubset(set(object_dict.keys())):
                        one = []
                        for fieldname in fieldnames:
                            if isdelwords and fieldname == 'content':
                                one.append(delNOTNeedWords(object_dict[fieldname])[1])
                            else:
                                one.append(object_dict[fieldname])
                        obj_s.append(one)
    return obj_s

def delNOTNeedWords(content,customstopwords=None):
    # words = jieba.lcut(content)
    if customstopwords == None:
        customstopwords = "stopwords.txt"
    import os
    if os.path.exists(customstopwords):
        stop_words = codecs.open(customstopwords, encoding='UTF-8').read().split(u'\n')
        customstopwords = stop_words

    result=''
    return_words = []
    # for w in words:
    #     if w not in stopwords:
    #         result += w.encode('utf-8')  # +"/"+str(w.flag)+" "  #去停用词
    words = pseg.lcut(content)

    for word, flag in words:
        # print word.encode('utf-8')
        tempword = word.encode('utf-8').strip(' ')
        if (word not in customstopwords and len(tempword)>0 and flag in [u'n',u'nr',u'ns',u'nt',u'nz',u'ng',u't',u'tg',u'f',u'v',u'vd',u'vn',u'vf',u'vx',u'vi',u'vl',u'vg', u'a',u'an',u'ag',u'al',u'm',u'mq',u'o',u'x']):
            # and flag[0] in [u'n', u'f', u'a', u'z']):
            # ["/x","/zg","/uj","/ul","/e","/d","/uz","/y"]): #去停用词和其他词性,比如非名词动词等
            result += tempword # +"/"+str(w.flag)+" "  #去停用词
            return_words.append(tempword)
    return result,return_words

def get_save_wikitext(wiki_filename,text_filename):
    output = open(text_filename, 'w')
    wiki = corpora.WikiCorpus(text_filename, lemmatize=False, dictionary={})
    for text in wiki.get_texts():
        # text = delNOTNeedWords(text,"../../stopwords.txt")[1]
        output.write(" ".join(text) + "\n")
        i = i + 1
        if (i % 10000 == 0):
            logging.info("Saved " + str(i) + " articles")
    output.close()

def load_save_word2vec_model(line_words, model_filename):
    # 模型参数
    feature_size = 500
    content_window = 5
    freq_min_count = 3
    # threads_num = 4
    negative = 3   #best采样使用hierarchical softmax方法(负采样,对常见词有利),不使用negative sampling方法(对罕见词有利)。
    iter = 20

    print("word2vec...")
    tic = time.time()
    if os.path.isfile(model_filename):
        model = models.Word2Vec.load(model_filename)
        print(model.vocab)
        print("Loaded word2vec model")
    else:
        bigram_transformer = models.Phrases(line_words)
        model = models.Word2Vec(bigram_transformer[line_words], size=feature_size, window=content_window, iter=iter, min_count=freq_min_count,negative=negative, workers=multiprocessing.cpu_count())
        toc = time.time()
        print("Word2vec completed! Elapsed time is %s." % (toc-tic))
        model.save(model_filename)
        # model.save_word2vec_format(save_model2, binary=False)
        print("Word2vec Saved!")
    return model

if __name__ == '__main__':

    limit = -1 #该属性决定取wiki文件text tag前多少条,-1为所有
    wiki_filename = '/home/wac/data/zhwiki-20160203-pages-articles-multistream.xml'
    wiki_text = './wiki_text.txt'
    wikimodel_filename = './word2vec_wiki.model'
    s_list = []

    # if you want get wiki text ,uncomment lines
    # get_save_wikitext(wiki_filename,wiki_text)

    # for i,text in enumerate(open(wiki_text, 'r')):
    #     s_list.append(delNOTNeedWords(text,"../../stopwords.txt")[1])
    #     print(i)
    #
    #     if i==limit: #取前limit条,-1为所有
    #         break
    #
    #计算模型
    model = load_save_word2vec_model(s_list, wikimodel_filename)

    #计算相似单词,命令行输入
    while 1:
        print("请输入想测试的单词: ", end='\b')
        t_word = sys.stdin.readline()
        if "quit" in t_word:
            break
        try:
            results = model.most_similar(t_word.decode('utf-8').strip('\n').strip('\r').strip(' ').split(' '), topn=30)
        except:
            continue
        for t_w, t_sim in results:
            print(t_w, " ", t_sim)

            

参考文章(贴上源址表示感谢)
使用维基百科训练简体中文词向量
中文Wiki语料获取
Wiki语料处理
中文维基语料训练获取
Windows3.5下对维基百科语料用word2vec进行训练寻找同义词相似度

(0)

相关推荐