【中考专题】例谈旋转变换求线段最值
本题来源于“中考数学研题群”,一群本着对数学的钟情,痴迷,因缘相聚一起,在数海中潜行,为学生服务,为教师优选!
目
录
原题呈现
解法赏析
拓展延伸
变式改编
01
原题呈现
Law

02
思维起点
Law
本题中的三条线段成共点模型,无法直接找到关系,处理此类问题的基本策略是旋转,但此题中有三角形ABC是直角三角形,故旋转后还需缩放,BD的取值范围问题最后转化为三点共线问题,此处过A,B,C三点可以有6种旋转方式,故常称“旋转六法”。
03
解法赏析
Law
视角1
从点A,B,C出发旋转+相似变换

福建莆田姚国成,临海李卫君,沈阳印文宁


厦门张平源

合肥高磊

合肥高磊

重庆陶然

合肥高磊
视角4
借用托勒密定理的推论求线段范围

宁波蒋老师


当然本题也可以从瓜豆原理去理解:


03
拓展延伸
Law
绍兴许华:

04
变式改编
Law


“题海无边,题根是岸”在解题教学或解题中,我们应该善于去寻找题目中的基本元素,寻找题目中一个个基本图形,很多题目看似不同,实质可能是一样的,把这类问题整理归类,就形成了“多题归一”,
特别感谢:安徽合肥高磊老师的gsp整理!
赞 (0)