New Phytol|河南农大王道文、康国章共同通讯在小麦磷酸盐吸收分子机制研究中取得新进展
有效地吸收和利用磷对提高作物产量至关重要。然而,在六倍体小麦等复杂作物中,其分子机制仍不清楚。本研究我们报告了TaPHT1;9-4B及其转录调控因子TaMYB4-7D在面包小麦Pi获得、转运和植株生长中的作用。
TaPHT1;9-4B是一种高亲和力Pi转运蛋白,在缺Pi条件下在根系中高度上调。TaPHT1中断;BSMV-VIGS或CRISPR编辑的9-4B功能损害了小麦对Pi剥夺的耐受性,而TaPHT1的转基因表达;9-4B提高了水稻对Pi的吸收和植株生长。利用酵母单杂交技术,我们分离到TaMYB4-7D,一种能激活TaPHT1的r2r3myb转录因子;通过与启动子结合表达9-4B。沉默TaMYB4-7D降低TaPHT1;9-4B表达、Pi吸收与植物生长。
TaPHT1基因有4个启动子单倍型;9-4B,Hap3与TaPHT1呈显著正相关;小麦9-4B转录水平、生长性能和磷含量。因此开发了一种功能性标记标记Hap3。
总之,我们的数据为控制小麦中Pi获取和利用的分子机制提供了新的线索。TaPHT1;9-4B和TaMYB4-7D有助于磷高效作物品种的进一步研究。
Efficient phosphate (Pi) uptake and utilisation are essential for promoting crop yield. However, the underlying molecular mechanism is still poorly understood in complex crop species such as hexaploid wheat. Here we report that TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D function in Pi acquisition, translocation and plant growth in bread wheat.
TaPHT1;9-4B, a high-affinity Pi transporter highly upregulated in roots by Pi deficiency, was identified using quantitative proteomics. Disruption of TaPHT1;9-4B function by BSMV-VIGS or CRISPR editing impaired wheat tolerance to Pi deprivation, whereas transgenic expression of TaPHT1;9-4B in rice improved Pi uptake and plant growth. Using yeast-one-hybrid assay, we isolated TaMYB4-7D, a R2R3 MYB transcription factor that could activate TaPHT1;9-4B expression by binding to its promoter. Silencing TaMYB4-7D decreased TaPHT1;9-4B expression, Pi uptake and plant growth.
Four promoter haplotypes were identified for TaPHT1;9-4B, with Hap3 showing significant positive associations with TaPHT1;9-4B transcript level, growth performance and phosphorus (P) content in wheat plants. A functional marker was therefore developed for tagging Hap3.
Collectively, our data shed new light on the molecular mechanism controlling Pi acquisition and utilisation in bread wheat. TaPHT1;9-4B and TaMYB4-7D may aid further research towards the development of P efficient crop cultivars
https://doi.org/10.1111/nph.17534
文章来源原创;如有侵权请及时联系PaperRSS小编删除,转载请注明来源。
温馨提示:
为方便PaperRSS粉丝们科研、就业等话题交流。我们根据10多个专业方向(植物、医学、药学、人工智能、化学、物理、财经管理、体育等),特建立了30个国内外博士交流群。群成员来源欧美、日韩、新加坡、清华北大、中科院等全球名校。