神奇的斐波那契数列在我们身边

神奇的斐波那契数列在自然界

宇宙有魔法方程吗?一系列的数字能够解开最复杂的有机特性或是破译《迷失》的情节?可能并不行,但是,由于一个中世纪人对兔子的痴迷,我们拥有了一系列数字,反映了自然界中发现的各种模式。

1202年,意大利数学家Leonardo Pisano(又名斐波纳契,意为“Bonacci的儿子”)思考了这个问题:在最佳条件下,一年里,一对兔子能繁殖多少对兔子?这个理论实验规定,母兔总是生下成对的兔宝宝,每对由一公一母组成。

想想看——两只新生的兔子被安置在一个有围栏的院子里,然后让像正常兔子一样繁殖。兔子至少要长到一个月才能开始繁殖,所以第一个月只有一对兔子。在第二个月月底,母兔产下两只兔子。当第三个月到来时,原来的一对兔子又产了一对新生儿,而它们早期的后代则已经成年。此时便留下了三对兔子,其中两对将在下个月再生两对兔子。

顺序如下:1,1,2,3,5,8,13,21,34,55,89,144和无穷大。这个数列从第3项开始,每一项都等于前两项之和,这一系列数字被称为斐波那契数列,随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…

乍一看,斐波那契的实验似乎对现实世界中养兔子没有任何帮助。但是这个数列经常出现在自然界中——这个事实也在几个世纪以来引发了科学家们的好奇心。

想看看这些迷人的数字是如何在自然界中表达的吗?无需跑到当地的宠物店;你所要做的就是仔细地观察你周围。

大自然中的黄金比例

黄金比例以螺旋表示。在下图中,壳体的生长区域以正方形绘制。如果两个最小方块的宽度为1,则其左侧框的宽度为2。其它框的宽度则为3、5、8和13。

斐波那契数在自然界中经常出现,足以证明它们反映了一些自然发生的模式。

你通常可以通过研究各种植物的生长方式来发现。以下是一些例子:

种子穗株、松果、水果和蔬菜:

看看向日葵中心的种子阵列,你会发现其中包含了某种螺旋图案致使它左右弯曲。令人惊讶的是,如果你计算这些螺旋,得到的总数将是一个斐波那契数字。

将螺旋分为指向的左侧和右侧,您将获得两个连续的斐波那契数。你可以破译松果,菠萝和花椰菜的螺旋图案,它们都反映斐波那契数列。

花和树枝:

有些植物在生长点,即树枝形成或分裂的地方表达斐波那契数列。一个枝干生长后产生分支,会产生两个生长点。接下来,主枝干生成另一个分支,从而产生三个增长点。然后树干和第一分支产生两个增长点,使总数达到五个。此模式继续遵循斐波那契数。

此外,如果你计算花上的花瓣数,通常会发现花瓣的总数就是斐波那契数列中的数字之一。例如,百合和鸢尾有三个花瓣,金凤花和野玫瑰有五个花瓣,飞燕草有八瓣等等。

蜜蜂:

蜜蜂群由蜂王、一些雄峰和大量工蜂组成。雌蜂(蜂王和工人)都有双亲,即雄峰和蜂王。另一方面,雄峰则从未受精的卵子中孵化出来。这意味着它们只有一个母亲。

因此,斐波那契数字可以表示雄峰的家谱,因为它分别有一个父母,两个祖父母,三个曾祖父母等等。

人体:

好好看看镜子里的自己,你会发现,你的大多数身体部位都遵循了数字1,2,3和5。你有一个鼻子,两只眼睛,每个肢体都有三段,每只手有五根手指。人体的比例和测量值也可以按黄金比例进行划分。DNA分子也遵循这个数列,在双螺旋结构的每一个完整周期中,长度为34埃,宽度为21埃。

为什么这么多的自然模式反映了斐波那契数列?几个世纪以来,科学家们一直在思考这个问题。在某些情况下,这种关联可能只是巧合。

在其它情况下,这个比率之所以存在,是因为这种特定的增长模式逐渐被证明为是最有效的增长模式。

斐波那契数列在股市的应用

斐波那契数列中相邻两项之商就接近黄金分割数0.618,与这一数字相关的0.191、0.382、0.5和0.809等数字就构成了股市中关于市场时间和空间计算的重要数字。

大到整个宇宙空间到小到分子原子,从时间到空间,从自然到人类社会,政治、经济、军事等,各种现象中的规律都能找到斐波那契数的踪迹。世界著名建筑如巴黎圣母院、埃菲尔铁塔、埃及金字塔等均能从它们身上找到0.618的影子。名画、摄影、雕塑等作品的主题都在画的0.618处。报幕员站在舞台的0.618处所报出的声音最为甜美、动听。人的肚脐眼是人体长度的0.618位置,人的膝盖是从脚底到肚脐眼长度的0.618。战争中0.618的运用也是无所不在,小到兵器的制造、中到排兵布阵到战争时间周期的运用,相传拿破仑大帝即败于黄金分割线。

在金融市场的分析方法中,斐波那契数字频频出现。例如,在波浪理论中,一轮牛市行情可以用1个上升浪来表示,也可以用5个低一个层次的小浪来表示,还可继续细分为21个或89个小浪;在空间分析体系中,反弹行情的高度通常是前方下降趋势幅度的0.382、0.5、0.618;回调行情通常是前方上升趋势的0.382、0.5和0.618。

斐波那契数列在实际操作过程中有两个重要意义:

一、在于数列本身。本数列前面的十几个数字对于市场日线的时间关系起到重要的影响,当市场行情处于重要关键变盘时间区域时,这些数字可以确定具体的变盘时间。使用斐波那契数列时可以由市场中某个重要的阶段变盘点向未来市场推算,到达时间时市场发生方向变化的概率较大。

图1综合指数:200710月-2008年11月3K线图

如下图2所示,上证综指2009年8月4日的3478点到2009年9月1日阶段低点2639点的时间关系是21个交易日,2009年9月1日的阶段低点2639点到2009年9月18日的高点3068点是13个交易日的时间,到2009年9月29日的低点2712点是21个交易日,到2009年10月23日的高点3123点的时间是34个交易日,到2009年11月24日的年度次高点3361点的时间是55个交易日。

图3为上证的季线图,也是以3.5.8.13个季度为周期。

本数列的衍生数字是市场中纵向时间周期计算未来市场变盘时间的理论基础。这组衍生数列分别是:1.236、1.309、1.5、1.618、1.809、2、2.236、2.382、2.5等一系列与黄金分割0.618相关的数字。

在使用神奇数列时主要有六个重要的时间计算方法:

第一、通过完整的下跌波段时间推算未来行情上涨波段的运行时间。

第二、通过完整的上涨波段时间推算未来行情下跌波段的运行时间。

第三、通过上升波段中第一个子波段低点到高点的时间推算本上升波段最终的运行时间。

第四、通过下降波段中第一个子波段高点到低点的时间推算本下跌波段最终的运行时间。

第五、通过本上升波段中第一子波段的两个相邻低点的时间推算未来上升波段的最终运行时间。

第六、通过下降波段中第一子波段的两个相邻高点的时间推算本下跌波段最终的运行时间。

植物中,这可能意味着嗜光如命的叶子的最大暴露面积或最大的种子排列方式。

(0)

相关推荐