某制药厂VOCs焚烧RTO系统爆炸原因分析

8.5-6 唐山  第四届钢铁行业超低排放技术交流会

RTO(Regenerative Thermal Oxidizer,蓄热式焚烧炉)系统在VOCs治理领域的应用日益广泛,但爆炸事故频发。因缺乏公开的事故调查报告,爆炸原因不明,同类事故时有发生,令人心痛。

 1、事故概况

安徽某制药厂于2019年6月15日17:00临时停产,停产后RTO系统按规程停机。该厂于次日8:00投料复产,RTO系统同时开机并升温,此时旁通阀开启、废气导入阀关闭,废气经RTO系统旁路净化系统处理达标后高空排放;RTO炉经吹扫并加热至800℃后,旁通阀关闭,废气导入阀开启,废气进入RTO炉,系统压力、温度等一切正常。废气导入2h后(11:00)RTO系统发生爆炸,爆炸声前后两次,间隔时间较短,一处位于RTO炉及相邻风机,另一处位于系统前端废气收集管道。事故导致RTO炉右侧蓄热室钢结构、保温棉、蓄热陶瓷和RTO炉近端的引风机、风管严重损坏,较远端风管脱落,并引燃周边干燥物,无人员伤亡。

2、事故原因分析

VOCs作为可燃物,能够与氧气在一定的浓度范围(爆炸浓度的上、下限之间和爆炸上限以上)形成预混气,遇到点火源(明火、电火花、静电火花、高热物等)会发生爆炸或燃烧,并释放大量的热和气体。

本文根据爆炸三要素:可燃物、助燃物和点火源进行排查分析。

      2.1可燃物

该制药厂进入RTO系统的废气主要来源于生产车间、罐区、污水站、固废仓库、原料仓库以及风管(积液长期未排,积液挥发)等,废气主要成分为甲醇、乙醇和甲苯等,这些VOCs均为可燃性气体(可燃物)。

由于RTO系统运行1.5h后才发生安全事故,风管内应无淤积废气;罐区废气采用集气罩方式收集,事发前无装卸料过程,不能形成达到爆炸极限的预混气;污水站、固废仓库、原料仓库等区域VOCs挥发量很小,事发前无大宗化学品或危废泄漏,也不具备形成达到爆炸极限的预混气。

事故后排查车间生产装置时发现,某蒸馏釜有残存甲醇,该釜蒸汽阀未完全关闭,使该釜一直处于被加热状态。因此,该次事故达到爆炸极限的可燃物主要来源于甲醇蒸馏釜。

      2.2 助燃物

RTO系统运行时助燃风机会向氧化室鼓入大量空气(氧气),但RTO炉氧化室事故后仍完好无损,说明氧化室未发生爆炸,助燃物非来自助燃风机;而各生产车间、罐区等采用集气罩收集的废气,以及污水站、固废仓库、原料仓库的通风换气,这些废气中混有大量的空气(氧气),为该起事故提供了助燃物。

     2.3点火源

(1)明火:当进入RTO炉内的废气氧化放热不足以维持氧化室的设定温度时,位于氧化室内的燃烧器会自动补入天然气并点火升温。事故后打开炉体发现RTO氧化室完好无损,并未发生爆炸,可排除明火为该起事故的点火源。

(2)电火花:位于氧化室内的燃烧器采用了电火花点火器,但氧化室未发生爆炸,也排除了电火花因素。

(3)静电火花:该厂废气输送管道及风机均未采用可导静电材质,废气高速流通与管壁摩擦及风机叶轮高速转动极易形成静电且静电无法导出,但废气输送管道和风机位于RTO炉前端,达到爆炸极限的预混气遇到静电后即可发生爆炸,而远端管道在事故中仅是脱落,损坏程度低;且风机爆炸后不会将预混气输送至RTO炉内。因此,可排除静电火花因素,同时说明风机和管道不是第一起爆点。

(4)高热物:高热物的温度高于可爆成分的起燃点时可引起爆炸,RTO炉高热物主要为氧化室内表面和蓄热陶瓷。其中氧化室未发生爆炸,可排除氧化室高温表面为本次事故的点火源;事故后打开炉体发现,RTO右侧蓄热室钢结构坍塌、蓄热陶瓷破碎、保温棉脱落,而另外两个蓄热室完好。由此可知,RTO炉右侧蓄热室为第一起爆点,其高温蓄热陶瓷为爆炸事故提供了点火源。

    2.4 事故经过还原

2019年6月15日,该制药厂停产时某工人工作疏忽忘记关闭生产车间甲醇蒸馏釜蒸汽阀,且放料不彻底;次日8:00复产时某工人未对岗位装置进行全面检查,在厂区蒸汽总阀开启后,残存釜内的甲醇逐渐升温并沸腾,大量甲醇蒸汽涌入风管后形成达到爆炸极限的预混气;RTO系统未安装实时废气浓度检测仪,废气导入阀无法连锁关闭,预混气进入RTO炉内,在流经RTO炉右侧蓄热室过程中升温至起燃点后发生爆炸,致使RTO炉右侧蓄热室钢结构、蓄热陶瓷和保温棉严重损害;由于RTO系统未安装阻火器,爆燃的废气回火至RTO炉前端的风机和风管,并导致风机爆炸、风管脱;脱落的风管内仍存在燃烧的废气,进而引燃周边的干燥物。

3 防范措施

3.1源头消减

(1)减量:强化车间预处理,如将常温循环水改为冷冻盐水,提高冷凝效率;增加吸收类循环液的更换频次,并设置自动加药、排污控制,提高吸收效率等,以减少进入RTO系统中VOCs的总量,从而降低废气达到爆炸的风险。

(2)降浓:储罐呼吸气、冷凝器不凝气等浓度较高,直接接入风管极易形成达到爆炸极限范围的预混气,可通过计算一定温度时某成分饱和蒸气压下的浓度,并将其稀释至爆炸下限(LEL)的25%设计风量;设置缓冲罐并补充新风,确保进入RTO系统的废气浓度低于其25%LEL。

3.2过程预防

(1)导静电:风管、风机等废气输送设备设施在不腐蚀情况下尽量选择刷有石墨涂层的玻璃钢、碳钢或不锈钢材质,并跨接、接地;同时避免直角弯头及弯头处尖角,防止废气输送过程中因摩擦起静电而无法导出。

(2)排积液:废气常因洗涤塔除雾效果不佳或冷却作用而在风管中形成积液,积液中含有VOCs并不断挥发至废气中,存在浓度升高现象,须定期排出。

(3)测浓度:在RTO系统前一定距离设置在线(实时)浓度检测仪,并与RTO系统废气导入阀、应急排空阀连锁控制,距离根据检测仪响应时间确定,当废气浓度超过25%LEL时,废气导入阀关闭,应急排空阀开启,防止高浓废气进入RTO系统。

(4)泄爆:风管每隔一定间距设置泄爆阀,泄爆阀压力低于风管承受应力;RTO系统前置洗涤塔在保证有效使用情况下选用低强度材质制作,以便爆炸发生时及时泄压,减少爆炸损失。

3.3末端把控

(1)双旁通设计:对RTO系统设置冷旁通、热旁通,其中冷旁通与浓度检测仪、废气导入阀、应急排空阀连锁,当浓度超过25%LEL时,废气导入阀关闭,废气无法进入RTO系统;应急排空阀开启,废气经冷旁通处理达标后排放。热旁通与新风阀、温度仪、压力计连锁,当RTO炉内温度、压力异常时,新风阀开启,稀释浓度降温降压,热旁通阀开启,部分高温废气直接从氧化室排出,经混合器降温冷却后排至烟囱,确保RTO系统安全连续运行。

(2)双流场模拟:RTO炉设计时对废气进行气流场和热流场模拟,其中气流场模拟确保RTO炉内无死角,废气能够均匀流畅通过,避免局部湍流或浓度过高;热流场模拟确定陶瓷装填量,选择适宜热回收效率,避免RTO炉蓄热室冷端温度过高,减少安全隐患。

(3)阻火:在RTO炉前端和生产车间后端风管设置阻火器、水封等,防止RTO炉或风管爆炸回火至前端或车间,减少事故损失。

(4)监控:将RTO系统与生产、风管压力计、中级风机、浓度检测仪等连锁控制,并纳入生产管理监控,避免生产与环保脱节。

4 结语

通过对某制药厂RTO系统爆炸因素进行逐一排查分析,还原了事故发生经过,确定了该起事故是因工人不当操作和RTO系统缺乏相应安全连锁装置所致,并从源头消减等方面提出诸多安全防范措施,为相关单位部门在RTO系统的设计生产、操作使用、事故分析、隐患排查、安全管理等方面提供经验参考。

本文转载由史风华,王文文发表《某制药厂RTO系统爆炸原因分析》

整理编辑 | 北极星VOCs在线公众号(bjx-vocs)

(0)

相关推荐

  • 精细化工rto蓄热式焚烧炉有主张

    对于化工企业来说,化工生产中的尾气处理技术是最大的问题,化工生产所产生的有毒气体不仅会污染环境,也会对生活在周边环境的居民的身体健康造成危害. 首先我们需要了解精细化工行业的废气,包括:烃类.醇类.醛 ...

  • 干货!RTO装置运行安全优化14条建议及VOCs治理焚烧类设备督查要点

    VOCs前沿 VOCs前沿是中国领先的大气污染防治行业新媒体.产业链社交与服务平台:发布环境空气.室内空气和工业源等领域涉VOCs的政策动态.标准规范.专家观点.教育培训和科技成果等内容,超15万环保 ...

  • RTO装置安全风险分析及管控措施

    近年来,随着国家环保法律法规的日趋严格,越来越多的危险化学品生产.储存.使用企业为了减少污染物无组织排放,配套建设了挥发性有机物(VOCs)收集蓄热式燃烧治理设施(以下简称RTO装置).本文简要介绍了 ...

  • 浅谈VOCs有机废气治理

    什么是VOCs? 在我国,VOCs(Volatile Organic Compounds)挥发性有机物,是指常温下饱和蒸汽压大于133.32Pa.常压下沸点在50-260℃以下的有机化合物,或在常温常 ...

  • 浅析涂装废气沸石转轮RTO工艺治理

    工业涂装车间是工业制造业的污染源之一,产生的VOCs若不进行必要的无害化处理,随意排放,会对环境带来严重的污染. 涂料企业生产工艺有 混合.搅拌.研磨.分散.灌装.清洗工序,其中混合.搅拌.研磨为主要 ...

  • 【知识传递】VOCs焚烧装置RTO控制方式设计的总体思路

    RTO废气处理系统,因VOCs具有可燃性,再加上运行中的高温.明火等特点,当浓度超过爆炸下限时,易发生爆炸.此外,氧化炉内热量超过限值,也会发生超温爆炸.另一方面,系统的仪表.阀门等设备出现故障或突发 ...

  • rto废气设备

    rto废气设备,化工废气RTO净化系统爆炸原因分析研究 摘 要:随着精细化工行业 VOCs 整治要求的不断提高,蓄热式废气焚烧炉 (RTO ) 在医药.化工等间歇生产企业有机废气处理中得到了更为广泛的 ...

  • VOCs治理中潜在的安全风险,企业请注意!

    在VOCs治理过程中,存在一些安全风险,如果不能准确识别,就可能引发安全事故.结合常用环保改造方式和现有事故分析,尾气治理过程中可能存在的风险主要有以下10点. (1)企业变更物料,未按照变更管理要求 ...

  • rto催化燃烧设备厂

    rto催化燃烧设备厂,蓄热式焚烧炉处理涂布废气工程实例 摘要:对江苏某材料包装生产企业实际采取的有机废气治理方法进行可行性分析,重点探讨了RTO(蓄热式废气氧化装置)结合烟气余热利用综合节能技术治理挥 ...

  • VOCs焚烧RTO系统中产生NOx的前世今生

    本文从笑气开始为大家讲述VOCs的焚烧RTO系统设计中关于氮氧化物的前世今生. 笑气就是一氧化二氮,无色有甜味气体,是一种氧化剂,在一定条件下能支持燃烧,但在室温下稳定,有轻微麻醉作用,并能致人发笑. ...

  • 风机爆炸原因分析

    风机爆炸原因分析 云南 曲煤焦化 大为制焦 黄兆荣 风机会发生爆炸,你可能表示怀疑,而且工作介质是空气,更是想不通,但事实就发生了.是由电动机.变速机和风机组成,电动机是高压电动机,风机是三级离心风机 ...

  • iPhone8充电时爆裂是真的?iPhone手机爆炸原因分析

    前几天,iPhone 8终于上市,备受众粉丝青睐和追捧,苹果在众多手机中也是热门产品了,但热门并不代表着不会出现问题.近日,台湾一市民的iPhone 8 Plus在充电时炸开,令人吃惊. 近日,台中市 ...

  • VOCs焚烧装置RTO控制方式设计的总体思路

    文章导读 RTO废气处理系统,因VOCs具有可燃性,再加上运行中的高温.明火等特点,当浓度超过爆炸下限时,易发生爆炸.此外,氧化炉内热量超过限值,也会发生超温爆炸.另一方面,系统的仪表.阀门等设备出现 ...

  • VOCs在线监测系统运行维护作业指导书

    本作业指导书用于规范国控.省控及市控重点企业污染源自动监测设施的日常运维工作.一.编制依据1.<主要污染物总量减排监测办法>(修订)2.<主要污染物总量减排监测系统考核办法>( ...

  • VOCs的闪点、爆炸极限及VOCs治理设备防爆识别

    『  行业动态先知道  』 Industry dynamics should be known first VOCs治理工程的安全性越来越受到客户的重视,达标排放的前提是安全.有机废气大多为易燃易爆物 ...

  • SN11爆炸原因公布,甲烷泄漏导致,硬核推理重演爆炸全过程

    今天SpaceX公司的创始人马斯克公布了针对"空中大烟花"SN11爆炸原因的调查结果,不是大家猜测的因偏离航线,为保安全而自动触发了飞行终止系统"FTS"的自毁 ...

  • 新电极焙烧时爆炸事故原因分析

    案例分析:2005年12月,宁夏某电石厂新建两台电石炉,于12月上旬安装完毕,12月20日开始焙烧1#炉电极,前两天电极焙烧正常,22日电极端头已基本形成固化物,电极底部铁板消耗完毕,23日中午,在焙 ...