考虑轨面设备的无绝缘轨道电路道砟电阻回归测量方法

作为列车运行控制系统的重要组成部分之一,轨道电路的信号传输质量直接关系到列车的运行安全。在具体实践中,两轨间存在的道砟电阻,会造成信号泄漏,导致信号传输质量降低。现场调研可知,道砟电阻的阻值受到多种因素影响,包括温度、湿度、道砟质量和状态、道砟层厚度、轨枕类型、轨枕数目与状态、木质轨枕所用防腐剂成分和防腐处理方法等[1]。阻值的过低或过高,会分别导致轨道电路出现“红光带”[2-3]或分路不良[4]等故障,最终影响行车效率,甚至威胁行车安全。对此,需要研究提出合理的测量方法,实现对道砟电阻的准确测量。

另在“布”一则中,周去非提到“广西触处富有苎麻,触处善织布,柳布、象布,商人贸迁而闻于四方者也”。柳布、象布,即柳州、象州所产的布,而“触处”是宋代口语,“到处”的意思。杨武泉的校注本提到,古时麻葛等质料粗劣的纺织品称为“布”,苎麻作为一种半灌木植物,茎皮纤维被作为纺织原料。这种原料制成的布匹在穿着的舒适度上多半也较差。但本地人在长期的使用过程中逐步掌握了苎麻的改造技术,对照该书“綀子”一则能更清晰地看到这种技术的进步。

近年常见的道砟电阻测量方法有开路短路法[5]、三阻抗法[6]、终端开路电压法[7]和始端开路短路电压法[7]等,但都主要针对机械绝缘轨道电路。然而,对于当前已在高速铁路和普速铁路上普遍使用的无绝缘轨道电路(Jointless Track Circuit,JTC)来说,因其轨面上分布有补偿电容,所以上述方法均不适用。后又有学者提出轨入电压法[8-9],利用微机监测系统[10],以监测到的无绝缘轨道电路调整态下接收器的轨入电压值来估算道砟电阻[11],但这种方法会出现轨入电压受轨面设备(如补偿电容和调谐区单元)故障等影响的问题,在实际运用中还是较难准确对道砟电阻进行估值。之后,2008年张兴杰等[12]提出1种道床电阻的在线测量方法,2017年赵林海等[13]提出分路条件下,利用机车感应电压幅值估算道砟电阻的方法,这2种方法也存在不够灵活、受列车运行计划制约等问题,未能得到大规模应用。

2.1 两组患者临床疗效比较 观察组患者治愈率高于对照组,组间比较差异有统计学意义(χ2=8.362,P<0.05),见表1。

综上所述,对于无绝缘轨道电路来说,目前铁路现场迫切需要1种高效准确、方便灵活的道砟电阻测量方法,这种方法不仅应满足道床调整、故障灯位和修复确认等工作的需要,而且还应具有较高的准确度,尽可能不受补偿电容、调谐单元等轨面设备故障的影响。

本文对无绝缘轨道电路调整状态下的轨面电流进行建模,研究道砟电阻对轨面电流幅值包络的影响规律;在此基础上,结合现场调研设计轨面电流幅值人工测量方法,通过对柜面电流幅值进行指数拟合的方法,得到不同道砟电阻对应的衰减因子,再构建衰减因子与道砟电阻的回归计算式;通过实验室条件下的无绝缘轨道电路半实物仿真平台,对本文方法进行功能验证和性能验证,探究测量结果的准确性与测量方法的鲁棒性,以期为现场人工测量道砟电阻提供可行的理论方法。

不难看出,以上三次零售业革命的划分,标准都是消费体验。所以,考量当前的新零售实践,体验是一个极为重要的标准。同时体验是多方面的,但是一些基本需求必要得到满足。

1 无绝缘轨道电路及道砟电阻

1.1 无绝缘轨道电路的构成和工作原理

无绝缘轨道电路由发送设备、轨道线路和接收设备3部分组成,其总体结构如图1所示。其中,发送设备主要包括发送器、发送电缆、发送端匹配变压器以及发送端调谐区(BA1s,BA2s和SVAs)等部分;轨道线路主要包括接收端到发送端轨面端点间的钢轨,以及均匀分布其间的补偿电容C;接收设备主要包括接收器、衰耗器、接收电缆、接收端匹配变压器以及接收端调谐区(BA1r,BA2r 和SVAr)等部分。

图1 无绝缘轨道电路总体结构框图

由图1可知:在调整状态(没有列车运行时)下,发送器输出信号经发送电缆、发送端匹配变压器和发送端调谐区后,沿钢轨到达接收端调谐区,再经接收端匹配变压器、接收端电缆和衰耗器,最终到达接收器。

1.2 道砟电阻对信号传输的影响

道砟电阻跨接在2根钢轨之间时,由于两轨间所传输的信号存在压差,部分信号电流会经道砟电阻,由1根钢轨漏泄到另1根钢轨,对钢轨中的信号传输造成影响。无绝缘轨道两轨间的道砟电阻分布如图2所示,图中Rd为道砟电阻。

图2 轨间特征参数和泄漏电流分布

一般来说,道砟电阻越小,两轨间的漏泄电流越大。在无绝缘轨道电路调整状态最不利的条件下,这可能会造成流经接收器的信号电流过少,进而导致相应轨道继电器落下,即出现“红光带”故障,影响列车运行效率。

反之亦然,道砟电阻越大,两轨间的漏泄电流越小。在无绝缘轨道电路分路状态最不利的条件下,这容易造成流经接收器的分路残压过大,进而导致相应轨道继电器无法落下,即出现“分路不良”故障,进而危及行车安全。

2 轨面电流的幅值包络建模及影响因素

由上节可知,道砟电阻的变化会影响无绝缘轨道电路调整状态下轨面信号电流的幅值大小。为估算道砟电阻,可采取如下的反推估算方法:对无绝缘轨道电路调整状态下轨面信号电流的幅值包络[14]进行建模,模拟分析道砟电阻以及补偿电容、调谐区设备故障[15]等因素对轨面电流幅值的影响规律,为之后估算道砟电阻提供理论依据。

2.1 轨面电流幅值包络建模

2.1.1 轨面任意点的电流等效模型

无绝缘轨道电路调整状态下,设轨面任意点的电流和电压分别为

的幅值为

的等效模型如图3所示。图中:Lg为轨道电路的轨道长度,从发送端到接收端的变量依次为:

为发送器输出信号;

分别为发送电缆和发送端匹配变压器的等效四端网络,其传输特性在实际运用过程中保持不变;

为发送端调谐区的等效四端网络;

为发送端调谐区到轨面x点之间的钢轨线路的传输特性等效四端网络;

为接收端调谐区到轨面x点之间的钢轨线路的传输特性等效四端网络;

为钢轨线络的等效四端网络;

为接收端调谐区的等效四端网络;

为接收端匹配变压器的等效四端网络;

为接收电缆的等效四端网络;

为从轨面接收端点向接收端的视入阻抗;

为从轨面电流x点向接收端方向的视入阻抗;

为发送器到轨面x点间的钢轨线路传输特性网络。

图3 无绝缘轨道电路调整状态下轨面任意点电流等效模型

根据传输线理论[16—17],以轨面上任意点为x,则此处的电流幅值

可表示为

式中:|·|为复数取模运算符;Afs为发送器输出信号

的振幅,为定值;

中第u行、第v列的元素。

式(1)无法直接表达出道砟电阻、补偿电容、调谐单元等因素对轨面电流幅值的影响,为进一步确定这3个因素与轨面电流幅值的数学关系,需对式(1)进行推演。

报载:“一带一路”能源部长会议和国际能源变革论坛在江苏省苏州市举行。会议期间,政府间国际组织国际可再生能源署(IRENA)总干事阿德南·阿明在国际能源变革主论坛和电力系统转型分论坛等活动中,充分肯定了中国国家电网:在可再生能源上的努力超过各国同行!国家电网的特高压输电技术代表未来!

2.1.2 轨面电流幅值

推演

1)发送端等效四端网络推导

根据四端网络的运算法则,发送器到轨面x点间的钢轨线路传输特性网络

可表示为

发送电缆的等效四端网络

和发送端匹配变压器的等效四端网络

均为定值,因此要求得

需计算确定发送端调谐区的等效四端网络

和发送端调谐区到轨面x点之间的钢轨线路的传输特性等效四端网络

式(2) 中的

根据文献[13]和文献[18]可表示为

式中:

分别为调谐区单元BA1的“极阻抗”和引接线阻抗;

为调谐区单元BA1 向BA2的视入阻抗。

WANG Hai-bo, SUN Jing-chuan, XU Xi-ming, WANG Yuan, GUO Yong-fei, YANG Hai-song, SHI Jian-gang

式(3)中的

又可根据文献[13]和文献[18]进一步表示为

式中:

为调谐区除去BA1以外的传输特性等效四端网络;

中第p行、第q列的元素;

为调谐区单元BA2的“零阻抗”。

在参数确定的情况下,轨道电路的等效四端网络就是固定的,所以式(2)中的

可表示为

式中:

为钢轨线路的等效四端网络。

根据文献[18],把轨道电路分成单个补偿电容形成的网络结构,若以Lg为轨道电路的轨道长度,n为Lg所包含的补偿电容总数,则每个补偿电容的间距L为

由此

可进一步表示为

式中:

为长度取

时的钢轨线路传输特性网络;

为补偿电容C的传输特性等效四端网络。

式(6)中的

根据文献[13]和文献[18]可分别表示为

钠钾ATP酶、钙ATP酶和CaN活性 与假手术组比较,模型组心肌钠钾ATP酶和钙ATP酶活性显著减低 (P<0.05),而CaN活性明显增高 (P<0.05)。与模型组相比,Rut高剂量组和阳性对照组钠钾ATP酶和钙ATP酶活性显著增加 (P<0.05), 心肌 CaN 活性显著降低 (P < 0.05)。 见表 3。

式中:

为钢轨阻抗[19];ω为轨道电路信号的角频率;

为补偿电容与钢轨连接线阻抗。

2)接收端等效四端网络推导

同理,对于接收端匹配变压器的等效四段网络

和接收电缆的等效四端网络

其传输特性在实际运用过程中保持不变,可根据文献[13],将接收端调谐区的等效四端网络

表示为

根据传输线理论,从轨面电流x点向接收端方向的视入阻抗

则可表示为

所谓互助外语导游,即,依托互联网平台,使具备良好的外语能力且获得相关导游资质的中国大学生可以凭借自身知识和语言等优势为想要在中国旅行的外国友人提供外语导游服务。由此,既为来华外国留学生构造了新颖独特的旅行,又为本地大学生提供发展自我、丰富阅历的机会,由此形成双方的共享经济模式,所谓互助。

3)轨面电流幅值

求解

根据轨面信号传输的工作原理,可得

式(11)和式(12)联立求解可得到式(1),这意味着,推导最终确定轨面电流幅值包络模型为式(1)。

4)小结

据调查显示,大学生作为社会阅历及信用条件较低的社会群体,因其身份的特殊性往往主要选择合伙融资、亲情融资的方式进行初始创业。近年来,各高校不断建设大学生创业孵化基地,选择向学校或当地申请创业基金的大学生也在不断地增加。但是,通过银行贷款、天使投资或风险投资成功融资的案例却相对匮乏。究其原因,从信誉度和偿债能力来看,广东大学生的能力有限,相应融资渠道少,创业困难重重。

由以上推演过程可知,道砟电阻Rd、补偿电容C以及接收和发送端调谐区设备(BA1r,BA2r和SVAr;BA1s,BA2s 和SVAs)会分别通过影响式(7)、式(6)和式(8)、式(3)、式(4)和式(9),并最终影响到式(1)中轨面任意点的电流幅值

2.2 轨面电流幅值影响因素

理论上可由

直接计算出道砟电阻,但实际上由于式(3)—式(10)较为复杂,很难直接给出Rd 与

间的解析表达式,因此本文采用模型仿真的形式,确定上述影响因素对

的影响规律[20]。

2.2.1 道砟电阻Rd对

的影响

根据ZPW-2000 A轨道电路调整表的部分基础参数,设仿真条件为:轨道电路长度Lg=1 120 m;信号载频ω=2 600 Hz;发送端输出电平Afs=120.4 V;补偿电容C=40 uF;补偿电容总数n=12。由仿真条件和调整表参考标准[8],可确定相邻2个补偿电容之间的距离为93.4 m,第1个补偿电容与接收端之间的距离、最后1个补偿电容与发送端的距离均为半个补偿电容间距,即46.7 m。

考虑到现场实际中Rd的取值下限为Rd=0.5 Ω⋅km,且只有在严重雨雪天气才会出现;而当Rd>10.0 Ω⋅km时,

的取值十分接近Rd=∞Ω⋅km时的情况,因此设道砟电阻Rd的变化范围为0.5~10.0 Ω⋅km。基于式(1)和式(7),分别计算道砟电阻Rd=0.5,1.0,2.0,3.0,4.0,10.0 Ω⋅km时的

其结果如图4所示。

图4 不同Rd取值下的

仿真结果

由图4可知:Rd对

的影响主要体现在其总体变化趋势上,从发送端到接收端,

整体呈近似指数的衰减趋势[2],且其衰减程度随Rd的减小而增大;Rd的不同取值对

的影响程度并不相同,随着Rd的增大,

逐步趋于稳定。

考虑到图4中

的衰减趋势近似于指数形式,故以此建立Rd与

的回归计算式。设a为幅度因子,b为衰减因子,将前文计算得到的不同Rd 取值下的轨面电流幅值

仿真结果,根据式(13)分别进行指数拟合,拟合得到的系数和相关系数R见表1。

今天,寻访团一行来到杭州始版桥,印刷专业的学生朝拜行业始祖——毕 ,今年是他在杭州发明活字印刷970年。烈日炎炎,寻寻觅觅,见人就问,无人知晓。最后,在一片住宅废墟上,有人告之这可能就是遗址。不禁唏嘘中国印刷之父毕 的发明地竟然如此境遇,但愿是我们搞错了。我们一直在反省自四大发明之后,中国于世界现代科技文明的定位到底是什么。

由表1可知,Rd 对

的影响程度可由式(13)中的幅度因子a和衰减因子b进行体现。以衰减因子b为例,随着Rd的降低,

的衰减程度不断增大,相应的衰减因子b也随之增大。

表1 不同Rd取值下的

拟合系数(a,b)和相关系数R

Rd阻值/(Ω⋅km)0.5 1.0 2.0 3.0 4.0 10.0幅度因子a 0.152 4 0.376 6 0.596 3 0.695 5 0.751 2 0.807 0衰减因子b 0.001 999 0.001 506 0.001 134 0.001 005 0.000 968 0.000 839相关系数R 0.998 9 0.997 8 0.997 6 0.996 7 0.995 9 0.989 5

2.2.2 补偿电容C故障对

的影响

为了评估算法,在Intel(R)Core(TM)i7-7700 CPU @ 3.60GHz,8GB内存,Ubuntu 16.04 LTS 64位操作系统的环境下进行了实验测试。测试的目标区域是50×50的正方形区域,算法的参数设置为popsize=3,pm=0.5,Gm=100,K1=5,K2=5。对节点数量N,节点感知半径Rs,节点通信半径Rc,网络的覆盖百分比p在不同取值情况下进行了多次实验,每一个实验用例测试30次,测试结果取平均值。

在前述仿真条件的基础上,令式(8)中第4个补偿电容的取值分别为0 和40 uF,仿真补偿电容C4 在断线故障和容值正常状态下的

,其结果如图5所示。

图5 C4在断线故障和容值正常状态下的AI→(x)仿真结果

由图5可知:补偿电容故障会影响该电容与发送端之间向接收端方向的视入阻抗,从而加剧

在该范围内的幅值波动,并影响AI→(x)的衰减程度。

在此,基于式(13),分别对图5中补偿电容C4 断线下的

衰减趋势进行全局拟合和以C4为断点的分段拟合,其结果见表2和表3。

表2 C4正常与断线故障情况下的AI→(x)曲线拟合系数(a,b)和相关系数R

故障情况无故障C4断线幅度因子a 0.588 8 0.530 5衰减因子b 0.001 029 0.001 160相关系数R 0.997 6 0.978 3

表3 C4断线障情况下整体曲线与局部曲线的

拟合系数(a,b)和相关系数R

拟合曲线选取情况接收端至C4断线处C4断线处至发送端幅度因子a 0.550 5 0.483 8衰减因子b 0.001 051 0.001 225相关系数R 0.988 6 0.906 7

由表2和表3可知:补偿电容故障总体上会使幅度因子a 变小,衰减因子b 变大,且这一变化主要体现在故障电容与发送端之间的AI→(x);相对而言,接收端与故障电容间的

所对应的衰减因子b受补偿电容断线的影响最小。

2.2.3 调谐单元故障对AI→(x)的影响

基于图4的仿真条件和式(1),并分别改变式(3)和式(9)中Z→tx的取值,对接收端、发送端相应调谐单元和空心线圈断线故障下的

进行仿真,其结果分别如图6和图7所示。同时,基于式(13),对图6和图7中相应仿真结果进行拟合,结果见表3。

图6 接收端调谐单元BA1r,BA2r和SVA故障下的

仿真结果

图7 发送端调谐单元BA1s,BA2s和SVA故障下的

仿真结果

表4 接收端和发送端相应调谐单元和SVA故障下

衰减趋势的指数拟合系数(a,b)和相关系数R

故障情况无故障接收端发送端BA1r断线BA2r断线SVAr断线BA1s断线BA2s断线SVAs断线幅度因子a 0.588 8 0.327 8 0.473 2 0.562 0 0.618 0 0.588 8 0.562 0衰减因子b 0.001 029 0.001 029 0.001 029 0.001 029 0.000 939 0.001 029 0.001 029相关系数R 0.997 6 0.901 8 0.957 6 0.983 5 0.905 9 0.988 7 0.990 6

由图6和表4可知:接收端BA1,BA2和SVA故障不会影响

的衰减程度,即相应的拟合衰减因子b 不会改变,仅有

的幅值波动强度受到影响,即相应拟合幅度因子a的取值发生变化,其中接收端BA1 断线会使AI→(x)的幅值波动增强,而接收端BA2 和SVA 断线则会使该幅值波动减弱。

由图7和表4可知:发送端BA1s 断线会使

的取值总体向下偏移,并降低其衰减程度,使

趋于平缓;发送端BA2 和SVA 断线仅会影响相应的幅度因子a,衰减因子b 则几乎不会受到影响。

3 基于

的道砟电阻回归测量方法

3.1 设计思路

由以上分析可知,道砟电阻Rd 对轨面任意点的电流幅值

的影响主要体现在其衰减程度上,而这可由式(13)中的幅度因子a 和衰减因子b 来体现。进一步,对比表2和表3可知,衰减因子b受补偿电容以及接收端和发送端调谐区设备对

的影响程度要明显小于幅度因子a。因此,可基于

,利用式(13)进行指数拟合,得到不同道砟电阻Rd所对应的衰减因子b;以此构建道砟电阻Rd 和衰减因子b 之间的回归计算式,再实地测量

,最终达到通过

值回归估算道砟电阻Rd的目的。

基于以上思路,结合在某路局开展的工作实际需求调研,设计道砟电阻回归测量方法由

测量、参数拟合和回归计算等3部分组成。其中,

测量主要是采用人工方式对被测无绝缘轨道电路相应位置的

进行实地测量;参数拟合是基于

实测数据,利用式(13)进行拟合,得到相应的衰减因子b值;回归计算是构建道砟电阻Rd和衰减因子b之间的回归计算式,以此计算给定衰减因子b所对应的道砟电阻。

下面以Rd=2.0 Ω⋅km的情况为例,对基于

的道砟电阻回归测量方法进行具体介绍。

3.2

测量

对于1个待测轨道电路,为测量轨面任意点的电流幅值

,需确定测量点位置和测量点数。

1)测量取值

考虑到现场工作人员的可操作性,将测量点选在补偿电容所在位置的前、后各1 m处,并将这2处的测量值取平均,作为补偿电容处的AˉI→(x),即有

2)测量取点

对接收端和发送端这2个端点以及全部12个补偿电容所在位置,共14个点构造测量点集。考虑到测量效率,还应在满足后续数据处理要求的基础上,尽可能地少取测量点数,即尽量缩短测量人员在轨道线路上的行走距离,为此,依次选取3~13个相邻的测量点开展测量,考察不同测量点数下的误差率。

3.3 参数拟合

对于选取的每1 组测量点,分别按式(13)进行拟合,得到相应的幅度因子a 和衰减因子b的取值。将拟合得到的所有b值整理绘图如图8所示,图中以b=0.001 134,即以2.2.1节仿真条件下Rd=2.0 Ω⋅km时整条曲线拟合后得到的b值作为原点。点数不同的情况下,衰减因子b误差率如图9所示。

图8 选取拟合点数不同情况下的衰减因子

图9 选取拟合点数不同情况下的衰减因子相对误差

由图8可知:点数不同的情况下,衰减因子b总体变化较小,曲线趋于平稳。进一步地,由图9可知:衰减因子b的相对误差总体变化较小,曲线总体趋于平稳;取4个测量点进行拟合时的误差率最大,但尚未超过3%。

由此,考虑到尽可能少取测点、尽可能缩短工作人员测量数据时在轨道上行走的距离,故选择接收端点及其就近的2个补偿电容位置,共计这3个测量点(轨面接收端点、C1点和C2点),测量轨面电流幅值并开展拟合计算。

可以看出,这种测量方法选取的位置点较少,节省了测量的时间和在轨道上行走的距离,提高了现场的测量效率,工作人员只需通过现有的测量设备和“天窗”作业时间,就能得到相应位置点的轨面电流幅值AI→(x),进而拟合得到衰减因子b。

3.4 回归计算

设道砟电阻Rd的变化范围为0.5~10.0 Ω⋅km,步长为0.1,仿真构建道砟电阻Rd 和衰减因子b 间回归计算式。

按式(1)进行仿真,得到相应的AI→(x);按3.3节对

仿真结果,取对应3个点的数据进行指数拟合,得到相应的衰减因子b;对道砟电阻Rd 及衰减因子b 进行回归拟合,结果如图10所示,得到的相应回归计算式见式(15)。

图10 衰减因子b与Rd的关系

式中:α1,α2,α3,α4,α5为回归系数。

式(15)即为道砟电阻Rd 与衰减因子b的回归计算式,相关系数R为0.998 2。可利用这一计算式实现对道砟电阻Rd的阻值估算。

从上述步骤可以看出,这种方法不仅为铁路现场测量道砟电阻阻值提供了有效的理论指导,而且操作简便,能够节省大量的时间和物力。

网络文化对学生具有浓厚的吸引力,但是由于网络具有虚拟性、开放性、交互性等特点,网络内容复杂多样,学生们选择阅读内容的时候就需要主观判断能力。因此,思想政治教育者就要加强对学生们判断能力的培养,深化他们的是非标准,对网络文化作出慎重的选择,多阅读那些积极向上、有利于身心健康的内容,了解国内外政治、经济、社会问题,对那些不健康的网络信息避而远之。同时应该大力改进网络思想教育,使其成为学生接受教育的一种方式。

4 实验验证

4.1 实验方案

利用实验室条件下的无绝缘轨道电路半实物仿真平台(图11),对本文方法进行功能验证和性能验证,所用设备的参数配置沿用前文的仿真条件。

图11 无绝缘轨道电路半实物平台

实验方案为:在本文方法的基础上,首先测量平台设备情况下的道砟电阻阻值,并与标准值进行比较以实现其功能验证[22]然后通过故障注入技术,分别设置各补偿电容和调谐区设备故障,求解相应故障下的道砟电阻阻值,并与标准值进行比较,以实现其性能验证。

4.2 功能验证

在实验平台设备无故障情况下,利用无接触电流表,模拟现场工作人员操作,依据本文方法分别测量接收端BA1r 和补偿电容C1、C2处的电流值。对测量值按式(13)进行指数拟合,拟合结果如图12所示,得到相应的衰减因子b=0.001 027。利用回归计算式(15),得到Rd=2.08 Ω⋅km。已知实验仿真平台的Rd=2.0 Ω⋅km,可得绝对误差为0.08 Ω⋅km,相对误差为4.04%。

图12 各补偿电容位置点2端的轨面电流值对比

可见,基于本文方法,仅测量指定3个位置点的电流,即可实现对道砟电阻较为准确的估算。

计算出d(Ei,Ej)后,再计算两证据之间的相似度Sij=1-d(Ei,Ej)(i,j=0,1,2,…,k),得到相似度矩阵S。

4.3 性能验证

4.3.1 调谐区设备故障

目前比较实用的瞳孔定位算法主要有Hough变换法、梯度向量法、椭圆拟合法、对称变换法和微积分法。1)Hough变换是常用的瞳孔定位方法,该方法在时间和空间消耗都非常大,无法满足实时性[3]。2)梯度向量法速度较快,适合于分辨率较低,光照随机场景,容易受光斑、图像模糊等干扰,定位的鲁棒性不高。3)椭圆拟合法速度快,但抗干扰性差,定位精度一般;4)对称变换法能够适应头部姿势的变化,但计算复杂度高、计算量大,不适合实时视线追踪系统。5)微积分法定位结果精度较高,但速度较慢,图像质量要求较高[4]。

通过故障注入技术,在实验平台分别设置接收端调谐区设备(BA1r,BA2r 和SVAr)和发送端调谐区设备(BA1s,BA2s 和SVAs)断线故障,利用本文方法计算故障前后的道砟电阻阻值,验证结果见表5。

由表5可知:调谐区设备故障对本文方法的影响较少,绝对误差范围为0.056~0.073 Ω⋅km,相对误差为2.8%~4.4%。可见本文方法对于此类故障具有较强的适应性。

表5 接收端和发送端设备故障验证结果

故障情况接收端发送端BA1r断线BA2r断线SVAr断线BA1s断线BA2s断线SVAs断线Rd阻值/(Ω⋅km)2.070 2.073 2.062 2.087 2.059 2.056衰减因子b 0.001 028 0.001 028 0.001 030 0.000 979 0.001 029 0.001 029绝对误差0.070 0.073 0.062 0.087 0.059 0.056相对误差/%3.5 3.6 3.1 4.4 3.0 2.8

4.3.2 补偿电容故障

在实验平台分别设置各位置补偿电容断线故障,利用本文方法计算故障前后的道砟电阻阻值,验证结果见表6。

采用补偿电容故障后轨面电流幅值曲线的3点进行拟合,得到衰减因子b,再利用回归计算式(15)得到Rd;结合表6可知,各位置最大绝对误差仅为0.157 Ω⋅km,对应的相对误差为7.9%。可见本文方法对补偿电容断线具有较好的鲁棒性,受其影响较小。

表6 各补偿电容断线故障下的估算误差

补偿电容故障位置C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Rd阻值/(Ω⋅km)1.862 1.897 1.978 1.956 1.937 1.978 2.073 2.073 2.096 2.103 2.139 2.157衰减因子b 0.001 035 0.001 033 0.001 030 0.001 031 0.001 032 0.001 030 0.001 028 0.001 028 0.001 024 0.001 021 0.001 017 0.001 016绝对误差0.138 0.103 0.022 0.044 0.063 0.022 0.073 0.073 0.096 0.103 0.139 0.157相对误差/%6.9 5.2 1.1 2.2 3.2 1.1 3.6 3.6 4.8 5.2 7.0 7.9

5 结 论

(1)构建无绝缘轨道电路调整态下的轨面电流幅值包络模型,通过仿真分析,得到道砟电阻、补偿电容和调谐区设备对轨面电流幅值的影响规律。

(2)形成1种基于轨面电流幅值估算道砟电阻的回归测量估算方法,并依托轨道电路半实物仿真实验平台,对方法进行验证。

(3)功能验证表明,本文方法仅测量指定3个位置点(轨面接收端点及补偿电容位置C1 和C2)的电流,即可较为准确地估算出道砟电阻,估算结果的绝对误差为0.08 Ω⋅km,相对误差为4.04%。

(4)性能验证表明,本文方法计算得到的道砟电阻最大绝对误差仅为0.157 Ω⋅km,对应的相对误差为7.9%,且估算结果受补偿电容和调谐区设备故障影响小。

(5)本文方法优化了测量点数,且对调谐区设备和补偿电容故障具有较好的适应性,现场工作人员仅需“天窗”时间就能完成作业,能够有效降低测量成本、提高测量效率。

参考文献

[1]陈满堂.轨道电路参数动态测量方法的研究[D],北京:北京交通大学,2005.

[2]耿燕.关于轨道电路道床电阻若干问题的探讨[J].铁路通信信号工程技术,2019,16(2):72-75.

(GENG Yan.Discussion on Several Problems for Ballast Resistance of Track Circuit[J].Railway Signalling &Communication Engineering,2019,16(2):72-75.in Chinese)

[3]毛献清.轨道电路红光带故障分析和对策措施[J].广西铁道,2008(2):16-17.

[4]朱峰,李鑫,李朋真,等.电气化铁路钢轨感抗的精确计算公式[J].中国铁道科学,2017,38(3):83-88.

(ZHU Feng,LI Xin,LI Pengzhen,et al.Accurate Calculation Formula for Rail Inductance of Electrified Railway[J].China Railway Science,2017,38(3):83-88.in Chinese)

[5]袁孝均.轨道电路分路不良问题研究[J].铁道通信信号,2007,43(4):11-14.

(YUAN Xiaojun.Study on Faulty Track Circuit Branch[J].Railway Signalling&Communication,2007,43(4):11-14.in Chinese)

[6]曹笃峰,吴命利,詹庆才,等.遂渝线无砟轨道试验段钢轨漏泄电阻测试[J].电气化铁道,2007,18(6):10-12.

(CAO Dufeng,WU Mingli,ZHAN Qingcai,et al.Rail Leakage Resistance Test in Ballastless Track Experimental Section of Sui-Yu Line[J].Electric Railway,2007,18(6):10-12.in Chinese)

[7]杨奎芳,张雪松,李德垂.轨道电路参数在线测试方法[J].铁道通信信号,1997,33(12):4-5.

(YANG Kuifang,ZHANG Xuesong,LI Dechui.Way for Measuring Track Circuit Parameter on Line[J].Railway Signalling&Communication,1997,33(12):4-5.in Chinese)

[8]中华人民共和国铁道部.中华人民共和国铁路运输行业标准:TB/T1445—82轨道电路参数[S].北京:中华人民共和国铁道出版社,1983.

[9]祁杰生.ZPW-2000A无绝缘轨道电路调整与道床电阻分析[J].铁道通信信号,2010,46(2):30-32.

(QI Jiesheng.Adjustment of ZPW-2000A Jointless Track Circuit and Analysis of Ballast Bed Resistance[J].Signalling&Communication,2010,46(2):30-32.in Chinese)

[10]FRIES J.Method and System for Calculating Railroad Track Ballast Resistance:U.S.7295017[P].2007-11-13.

[11]姜守轩.无绝缘轨道电路道碴电阻测试方法的研究[J].铁路通信信号工程技术,2006,3(5):6-9.

(JIANG Shouxuan.Study on Testing Method for Ballast Resistance of UM-71 Jointless Track Circuit[J].Railway Signalling&Communication Engineering,2006,3(5):6-9.in Chinese)

[12]张兴杰.轨道交通道床电阻的在线测量方法:中国,200710300072.8[P].2008-6-11.

[13]赵林海,刘成波,冉义奎.无绝缘轨道电路道砟电阻在线监测方法[J].铁道学报,2017,39(8):101-106.

(ZHAO Linhai,LIU Chengbo,RAN Yikui.On-Line Monitoring of Ballast Resistance of Jointless Track Circuits[J].Journal of the China Railway Society,2017,39(8):101-106.in Chinese)

[14]张永贤,余江松,甘方成.ZPW-2000 无绝缘轨道电路分路电流仿真研究[J].华东交通大学学报,2007,24(5):67-69.

(ZHANG Yongxian,YU Jiangsong,GAN Fangcheng.Simulation of ZPW-2000 Jointless Track Circuit Shunt Current[J].Journal of East China Jiaotong University,2007,24(5):67-69.in Chinese)

[15]孙上鹏,赵会兵,全宏宇,等.基于定性趋势分析的无绝缘轨道电路电气绝缘节设备故障诊断方法[J].中国铁道科学,2014,35(1):105-113.

(SUN Shangpeng,ZHAO Huibing,QUAN Hongyu,et al.Equipment Fault Diagnosis for Electrical Separation Joint of Jointless Track Circuits Using Qualitative Trend Analysis[J].China Railway Science,2014,35(1):105-113.in Chinese)

[16]HILL R J,BRILLANTE S,LEONARD P J.Electromagnetic Field Modelling for Transmission Line Distributed Parameters of Railway Track[J].IEE Proceedings-Electric Power Applications,1999,146(1):53.

[17]HILL R J,BRILLANTE S,LEONARD P J.Railway Track Transmission Line Parameters from Finite Element Field Modelling:Series Impedance[J].IEE Proceedings-Electric Power Applications,1999,146(6):647.

[18]石卫师.无绝缘轨道电路建模仿真及应用研究[D].北京:北京交通大学.2014.

(SHI Weishi.Researches on Modeling Simulation and Application of Jointless Track Circuit[D].Beijing:Beijing Jiaotong University,2014.in Chinese)

[19]朱斌.轨道电路参数测量优化方法分析[J].光盘技术,2008(10):42.

(ZHU Bin.Analysis of Measuring Optimization Method of Track Circuit Parameter[J].CD Technology,2008(10):42.in Chinese)

[20]赵林海,冉义奎,穆建成.基于遗传算法的无绝缘轨道电路故障综合诊断方法[J].中国铁道科学,2010,31(3):107-114.

(ZHAO Linhai,RAN Yikui,MU Jiancheng.A Comprehensive Fault Diagnosis Method for Jointless Track Circuit Based on Genetic Algorithm[J].China Railway Science,2010,31(3):107-114.in Chinese)

[21]孟景辉,谢保锋,高利民.基于线性拟合的区间轨道电路传输特性[J].中国铁道科学,2011,32(1):112-117.

(MENG Jinghui,XIE Baofeng,GAO Limin.The Transmission Characteristics of the Section Track Circuit Based on the Linear Fitting Method[J].China Railway Science,2011,32(1):112-117.in Chinese)

(0)

相关推荐