压轴题打卡100:二次函数有关的综合问题分析

在坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(﹣3,0)和B(1,0),与y轴交于点C
(1)求抛物线的表达式;
(2)若点D为此抛物线上位于直线AC上方的一个动点,当△DAC的面积最大时,求点D的坐标;
(3)设抛物线顶点关于y轴的对称点为M,记抛物线在第二象限之间的部分为图象G.点N是抛物线对称轴上一动点,如果直线MN与图象G有公共点,请结合函数的图象,直接写出点N纵坐标t的取值范围.
参考答案:
考点分析:
二次函数综合题.
题干分析:
(1)设抛物线的解析式为y=ax+3)(x﹣1),然后将a=﹣1代入即可求得抛物线的解析式;
(2)过点DDEy轴,交AC于点E.先求得点C的坐标,然后利用待定系数法求得直线AC的解析式,设点D的坐标为(x,﹣x2﹣2x+3),则E点的坐标为(xx+3),于是得到DE的长(用含x的式子表示,接下来,可得到△ADC的面积与x的函数关系式,最后依据配方法可求得三角形的面积最大时,点D的坐标;
(3)如图2所示:先求得抛物线的顶点坐标,于是可得到点M的坐标,可判断出点M在直线AC上,从而可求得点N的坐标,当点N′与抛物线的顶点重合时,N′的坐标为(﹣1,4),于是可确定出t的取值范围.

▷▷点我领取学习资料

您也可以登陆学习平台↓

第一中考(www.diyizhongkao.com)

点击原文,获取更多学习资料

(0)

相关推荐