在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣4(m≠0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴交于点D.②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线y=kx+b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;计算题.(2)已知BC=4,由(1)可知抛物线对称轴为x=1,所以可知B点坐标,将其代入抛物线方程可求得m的值,于是得到抛物线解析式;②由m=1即可得到B(﹣1,0),C(3,0),再求出D(0,﹣3),画出抛物线,通过画图可得当k>0时,直线y=kx+b过A、C时,k最大;当k<0,直线y=kx+b过A、D时,k最大,然后分别求出两直线解析式即可得到k的范围.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和一次函数图象的性质.
▷▷▷▷▷点我领取学习资料◁◁◁◁◁
您也可以登陆学习平台↓
第一中考(www.diyizhongkao.com)
点击原文,获取更多学习资料
👇👇