初中数学——“PA k·PB”型的最值问...
1、其中点P在直线上运动的类型称之为“胡不归”问题
2、点P在圆周上运动的类型称之为“阿氏圆”问题
①“胡不归”构造某角正弦值等于小于1系数
②“阿氏圆”构造共边共角型相似
相关推荐
-
【中考必读】双线段最值之PA+PB、PA+K·PB、PA-PB型(上)
文章行文思路入下: 福利: 笔者主编的<领跑数学 中考二轮专题复习> 已经上市,欢迎大家选购. 订购方式: 1.长按识别下图中左下角二维码
-
初中数学——阿氏圆最值模型在前面的“胡不...
初中数学--阿氏圆最值模型 在前面的"胡不归"问题中,我们见识了"kPA+PB"最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的" ...
-
初中数学几何最值问题之“胡不归”问题
[问题背景] "PA+k·PB"型的最值问题是近几年中考考查的热点更是难点.当 k 值为 1 时,即可转化为"PA+PB"之和最短问题,就可用我们常见的&quo ...
-
专题8 “PA+k·PB”型的最值问题
(1)承蒙厚爱,先干为敬.所有课件教案均为整理版,非原题作者,若有侵权,请联系胡先森. (2)需要word版本的同学或者同行,可添加胡先森微信,注明来意,胡先森可能姗姗来迟,但不会缺席. (3)欢迎联 ...
-
【中考必读】双线段最值之PA+PB、PA+K·PB、PA-PB型(下)
上文链接: [中考必读]双线段最值之PA+PB.PA+K·PB.PA-PB型(上) 福利: 笔者主编的<领跑数学 中考二轮专题复习> 已经上市,欢迎大家选购. 订购方式: 1.长按识别下图 ...
-
初中数学最值问题——阿氏圆与费马点(值得...
初中数学最值问题--阿氏圆与费马点(值得学习) 1.阿氏圆(阿波罗尼斯圆)模型专题训练 类型一.向内构造类型 类型二.向外构造型 2."费马点"模型.
-
初中数学最值系列之阿氏圆问题
在"胡不归"问题中,我们见识了"kPA+PB"最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的"阿氏圆"问题. 所谓&q ...
-
初中数学“PA k·PB”型的最值问题
[问题背景] "PA+k·PB"型的最值问题是近几年中考考查的热点更是难点.当 k 值为 1 时,即可转化为"PA+PB"之和最短问题,就可用我们常见的&quo ...
-
【模型背景】“PA k·PB”型的最值问...
[模型背景]"PA+k·PB"型的最值问题是近几年中考考查的热点更是难点.当k 值为1时,即可转化为"PA+PB"之和最短问题,就可用我们常见的"饮马 ...
-
初中数学|PA k·PB型的最值问题(胡不归 阿氏圆)
初中数学|PA k&#183;PB型的最值问题(胡不归 阿氏圆)
-
“PA k·PB”型的最值问题是近几年中考考查的热点更是难点
“PA k&#183;PB”型的最值问题是近几年中考考查的热点更是难点
-
“PA k·PB”型的最值问题:胡不归与阿氏圆
[问题背景] "PA+k·PB"型的最值问题是近几年中考考查的热点更是难点.当k值为1时,即可转化为"PA+PB"之和最短问题,就可用我们常见的"饮马 ...
-
“PA+k·PB”型的最值问题(一)
春熙初中数学 25篇原创内容 公众号 初中数学解题思路 本号致力于初中数学学习的钻研和探索.全面覆盖初中数学典型题集.解题模型.动点最值.思路方法.超级易错.几何辅助线.压轴破解等方面,欢迎关注! 1 ...
-
“PA+k·PB”型的最值问题(二)
春熙初中数学 25篇原创内容 公众号 初中数学解题思路 本号致力于初中数学学习的钻研和探索.全面覆盖初中数学典型题集.解题模型.动点最值.思路方法.超级易错.几何辅助线.压轴破解等方面,欢迎关注! 1 ...
-
最短路径:阿氏圆(PA k•PB型)定圆型轨迹问题探究
[知识精讲] 在平面上,到线段两端距离相等的点,在线段的垂直平分线上,即对于平面内的定点A.B,若平面内有一动点P满足PA:PB=1,则P点轨迹为一条直线(即线段AB的垂直平分线),如果这个比例不为1 ...