经典方法|中介效应检验程序、操作应用

实证财会与治理

6篇原创内容
公众号

原文出处:《心理学报》,作者:温忠麟等

中介效应检验程序及其应用

摘 要 讨论了中介变量以及相关概念、中介效应的估计;比较了检验中介效应的主要方法;提出了一个检验程序, 它包含了依次检验和Sobel 检验。该程序检验的第一类和第二类错误率之和通常比单一检验方法小, 既可以做部分中介检验, 也可以做完全中介检验。作为示范例子, 引入中介变量研究学生行为对同伴关系的影响。
关键词 中介变量, 检验, 第一类错误率, 功效, 同伴关系

01

引言

中介变量(mediator)是一个重要的统计概念 , 国外涉及中介变量的研究很多, 依 PsycINFO 检索结果 ,仅 1998 ~ 2003 年涉及中介变量且在标题中含有相关词条(包括 mediator 、mediating 或mediation) 的就有1100 多篇。国内对中介变量的研究很少, 依中国期刊网“文史哲”和“教育与社会科学”专栏目录的检索结果, 1998 ~ 2003 年在标题或关键词中含有“中介变量”或“中介效应”的文章不足20 篇。这些 文章中 ,有些只是做定性分析 ,说说中介变量而已 ; 有些虽然做了统计分析 ,但没有中介变量分析 。只有少数几篇做了涉及中介变量的统计分析, 其中较好的如文[1] 和[2] , 都使用了结构方程分析, 但对中介效应的分析还是有点粗略。以文[1]为例, 标题中出现了“中介变量” ,可见中介变量及其效应分析应当是该文的重点 。文中虽然估计了中介效应的大小,但没有报告中介效应的相对大小(即中介效应占全部效应的比例),最大的不足是没有对中介效应进行必要的检验。国内涉及中介变量的统计研究稀少并且总体质量不高的原因可能是多方面的, 缺少方法论的研究是一个重要原因。事实上, 国内还未见到专门讨论如何分析中介效应的文章。检验中介效应的方法很多, MacKinnon 等人[3] 通过模拟研究比较了十几种检验方法。他们倾向于使用该文主要作者1998 年提出的一个高功效 (pow er)的检验方法[4] 。但该方法的主要缺点是在有些情况下 ,第一类错误率太大 ,远远高于给定的显著性水平[3]  。本文提出了一个包含两种检验方法的检验程序 , 其中并没有 MacKinnon 等人的方法[4] 。新的检验程序很好地控制了第一类错误率, 同时又有较高的检验功效。使用新提出的检验程序 ,我们在“学生行为对同伴关系的影响” 研究中对两个变量(教师喜欢程度和教师管教方式)进行了中介效应的检验。

02

中介变量和相关概念

在本文中, 假设我们感兴趣的是因变量(Y )和自变量(X)的关系。虽然它们之间不一定是因果关系 ,而可能只是相关关系,但按文献上的习惯而使用“ X 对Y 的影响” 、“因果链”的说法。为了简单明确起见,本文在论述中介效应的检验程序时 ,只考虑一 个自变量 、一个中介变量的情形。但提出的检验程序也适合有多个自变量、多个中介变量的模型(见 5 .1 节的讨论)。
2 .1 中介变量的定义
考虑自变量 X 对因变量 Y 的影响, 如果 X 通过影响变量 M 来影响Y ,则称 M 为中介变量。例 如,“父亲的社会经济地位”影响“儿子的教育程度” , 进而影响“ 儿子的社会经济地位”[5] 。又如, “工作环境”(如技术条件)通过“工作感觉”(如挑战性)影 响“工作满意度”[6] 。在这两个例子中, “儿子的教育程度”和“工作感觉”是中介变量 。
假设所有变量都已经中心化(即均值为零), 可用下列方程来描述变量之间的关系(相应的路径图见图1):
假设 Y 与X 的相关显著 ,意味着回归系数 c显著(即 H0 :c =0 的假设被拒绝),在这个前提下考虑中介变量 M 。如何知道 M 真正起到了中介变量的作用, 或者说中介效应(mediato r effect)显著呢? 目前有三种不同的做法[3] 。
图1 中介变量示意图
传统的做法是依次检验回归系数[7,8] 。如果下 面两个条件成立, 则中介效应显著:(i)自变量显著影响因变量 ;(ii)在因果链中任一个变量, 当控制了它前面的变量(包括自变量)后后, 显著影响它的后继变量。这是 Baron 和 Kenny 定义的(部分)中介过程[8]。如果进一步要求 :(iii)在控制了中介变量后, 自变量对因变量的影响不显著, 变成了 Judd 和 Kenny 定义的完全中介过[7]。在只有一个中介变量的情形, 上述条件相当于(见图 1):(i)系数 c 显著(即 H0 :c =0 的假设被拒绝);(ii)系数  a 显著(即H0 :a =0 被拒绝), 且系数 b 显著(即 H0 :b =0 被拒绝)。完全中介过程还要加上:(iii)系数 c' 不显著。
第二种做法是检验经过中介变量的路径上的回 归系数的乘积 ab 是否显著, 即检验 H0 :ab =0 ,如 果拒绝原假设 , 中介效应显著 [4,9,10], 这种做法其 实是将 ab 作为中介效应 。
第三种做法是检验 c' 与 c 的差异是否显著, 即检验 H0 :c -c' =0 , 如果拒绝原假设, 中介效应显著[11,12] 。
2 .2 中介效应与间接效应
依据路径分析中的效应分解的术语[13] , 中介效应属于间接效应(indirect effect)。在图 1 中, c 是 X 对Y 的总效应, ab 是经过中介变量 M 的间接效应 (也就是中介效应), c' 是直接效应。当只有一个自变量、一个中介变量时 ,效应之间有如下关系
当所有的变量都是标准化变量时 ,公式(4)就是 相关系数的分解公式[13] 。但公式(4)对一般的回归系数也成立(证明见[14] )。由公式(4)得 c-c' = ab ,即 c-c' 等于中介效应 , 因而检验 H0 :ab =0 与H0 :c-c' =0 是等价的 。但由于各自的检验统计量不同,检验结果可能不一样 。
中介效应都是间接效应 ,但间接效应不一定是中介效应。实际上 ,这两个概念是有区别的。首先, 当中介变量不止一个时 , 中介效应要明确是哪个中介变量的中介效应, 而间接效应既可以指经过某个特定中介变量的间接效应(即中介效应), 也可以指部分或所有中介效应的和。其次, 在只有一个中介变量的情形 ,虽然中介效应等于间接效应 ,但两者还是不等同。中介效应的大前提是自变量与因变量相关显著, 否则不会考虑中介变量。但即使自变量与因变量相关系数是零, 仍然可能有间接效应 。下面的人造例子可以很好地说明这一有趣的现象([15] , p128 ;也可参见[13] , p48)。设Y 是装配线上工人的出错次数,X 是他的智力, M 是他的厌倦程度。又设智力(X)对厌倦程度(M)的效应是0 .707(= a), 厌倦程度(M)对出错次数(Y )的效应也是 0 . 707(=b), 而智力对出错次数的直接效应是-0 .50 (=c′)。智力对出错次数的总效应(c=)是零(即智力与出错次数的相关系数是零)。本例涉及效应(或 相关系数)的遮盖(suppression)问题 。由于实际中比较少见 ,这里不多讨论 。但从这个例子可以看出中介效应和间接效应是有区别的 。当然 , 如果修改中介效应的定义, 不以自变量与因变量相关为前提, 则另当别论。在实际应用中 ,当两个变量相关不显著时,通常不再进一步讨论它们的关系了 。

03

中介效应分析方法

由于中介效应是间接效应, 无论变量是否涉及潜变量 ,都可以用结构方程模型分析中介效应(可参考[13] , 中文可参考[16] )。从路径图(图1)可以看出,模型是递归的(recursive), 即在路径图上直线箭头都是单向的, 没有反向或循环的直线箭头, 且误差之间没有弧线箭头联系 。所以 , 如果所有变量都是显变量,可以依次做方程(1)—(3)的回归分析 ,来替代路径分析。就是说 ,如果研究的是显变量, 只需要做通常的回归分析就可以估计和检验中介效应了 。
无论是回归分析还是结构方程分析, 用适当的统计软件都可以得到 c 的估计c ;a , b , c′的估计 a , b , c′, 以及相应的标准误 。中介效应的估计是 ab′ 或c -c′, 在显变量情形并且用通常的最小二乘回归估计时 ,这两个估计相等[14] 。在其他情形 ,使用 ab 比较直观, 并且它等于间接效应的估计。除了报告中介效应的大小外 ,还应当报告中介效应与总效应之比(ab/(c' +ab)), 或者中介效应与直接效应之比(ab/ c' ), 它们都可以衡量中介效应的相对大小[14] 。
与中介效应的估计相比, 中介效应的检验要复杂得多。下面按检验的原假设分别讨论 。
3 .1 依次检验回归系数
在三种做法中 ,依次检验回归系数涉及的原假设最多,但其实是最容易的。如果 H0:a =0 被拒绝且H0 :b =0 被拒绝 ,则中介效应显著, 否则不显著 。完全中介效应还要检验 H0 :c' =0 。检验统计量 t等于回归系数的估计除以相应的标准误 。流行的统计软件分析结果中一般都有回归系数的估计值 、标准误和 t 值 ,检验结果一目了然 。这种检验的第一类错误率很小, 不会超过显著性水平,有时会远远小于显著性水平。问题在于当中介效应较弱时, 检验的功效很低。这容易理解, 如果  a  很小(检验结果是不显著),而b很大(检验结果是显著),因而依次检验的结果是中介效应不显著, 但实际上的ab 与零有实质的差异(中介效应存在),此时犯了第二类错误 。做联合检验(原假设是 H0 :a =0 且 b =0 , 即同时检验 a 和 b 的显著性), 功效要比依次检验的高[ 3] 。问题是联合检验的显著性水平与通常的不一样 ,做起来有点麻烦。
3 .2 检验 H0 :ab =0
检验 H0 :ab =0 的关键在于求出 ab 的标准误。目前至少有5 种以上的近似计算公式[ 3] 。当样本容量比较大时(如大于500), 各种检验的功效差别不大。值得在此介绍的是 Sobel 根据一阶 Taylor 展式得到的近似公式[9,10]
其中, Sa , Sb 分别是a^ ,b^ 的标准误。检验统计量是 z =a^b^/ Sab 。只有一个中介变量的情形, LIS- REL[17] 输出的间接效应的标准误与使用这个公式计算的结果一致。在输出指令“OU”中加入“ EF”选 项 ,会输出包括间接效应在内的效应估计 、相应的标准误和 t 值 ,这个 t 值就是 Sobel检验中的 z 值。
由于涉及到参数的乘积的分布 , 即使总体的 X 、M 和 Y 都是正态分布, 并且是大样本 ,z =a^b^/ Sab 。还是可能与标准正态分布有较大的出入。MacKinnon 等人用该统计量但使用不同的临界值进行检验[4] 。在他们的临界值表中 ,显著性水平 0 .05 对应的临界值是 0 .97(而不是通常的 1.96 ,说明中介变量有更多的机会被认为是显著的, 从而检验的功效提高了, 但第一类错误率也大大增加了),该临界值表可以从 http ://w ww .public.asu .edu/ ~ davidpm/ ripl/methods .htm 下 载。MacKinnon 等人[3] 的模拟比较研究发现 ,在样本较小或总体的中介效应不大时 ,使用新的临界值检验的功效比同类检验的要高 ,在总体参数a =0 且 b =0 时第一类错误率与 0 .05 很接近, 因而是一种比较好的检验方法 。但在统计软件采用该临界值表之前 , 难以推广应用 。而且,当 a =0 或 b =0 只有一个成立时(此时也有 ab =0 ,即中介效应为零),第一类错误率远远高于 0 .05 ,这是该方法的最大弊端。
3 .3 检验 H:c-c' =0 
同样 ,检验 H0 :c-c' =0 的关键在于如何计算 c -c' 的标准误。目前也有多种近似公式 。M acKin-non 等人[3]比较的结果是其中有两个公式得到的检验有较高的功效, 在总体参数 a =0 且 b =0 时的第一类错误率与  0 .05 很接近 。一个是 Clogg 等人给出的公式[11]
其中 rXM是X 和 M 的相关系数。另一个是 Freed- man 等人推出的公式[12]
当 a =0 但 b ≠0 时(此时 ab =0 ,即中介效应为 零),这两种公式对应的检验(即 t =(c -c' )/ sc-c'作为检验统计量)的第一类错误率都很高 。特别是公式(6), 对应的第一类错误率有可能高达 100 %。事实上 ,由公式(6)得到的检验与 H0 :b =0 的检验等价[11]。就是说 ,即使中介效应不存在(ab =0), 只要 b 显著,检验结果就是中介效应显著(犯了第一类错误)。
3 .4 中介效应检验方法小结 
虽然检验的三种做法(即三种检验类型)的原假设不一样 ,但它们的本质是相同的 :中介效应为零对应于下面三种情形之一:(1)a =b =0 ,(2)仅 a =0 , (3)仅 b =0 ;而中介效应不为零则对应于 ab ≠0 。为了方便比较 ,表 1 列出了上面提到的在同类检验中较好的检验方法, 其中第一类错误率和功效的比较是归纳了 M acKinnon 等人[3]的模拟结果 。
3 .5 一个实用的中介效应检验程序
为了使一个中介效应检验的第一类错误率和第二类错误率都比较小 ,既可以检验部分中介效应, 又可以检验完全中介效应, 而且还比较容易实施 ,综合表 1 的结果,我们提出如下检验程序。
1 .检验回归系数 c ,如果显著, 继续下面的第 2 步。否则停止分析。
2 .做 Baron 和 Kenny[8] 部分中介检验, 即依次检验系数 a , b , 如果都显著,意味着 X 对Y的影响至少有一部分是通过了中介变量M 实现的 ,第一类 错误率小于或等于 0 .05 ,继续下面第 3 步。如果至少有一个不显著 ,由于该检验的功效较低(即第二类错误率较大),所以还不能下结论, 转到第 4 步。
3 .做 Judd 和 Kenny[7] 完全中介检验中的第三个检验(因为前两个在上一步已经完成), 即检验系数 c' ,如果不显著 ,说明是完全中介过程, 即 X 对Y 的影响都是通过中介变量 M 实现的;如果显著,说明只是部分中介过程 ,即 X 对Y 的影响只有一部分是通过中介变量 M 实现的 。检验结束。
4 .做 Sobel[9] 检验 ,如果显著 ,意味着 M 的中介效应显著 ,否则中介效应不显著。检验结束。
整个检验程序见图 2 。这个程序有可能只需要依次检验,即使需要 Sobel 检验 , 用公式(5)直接计算Sab和检验统计量 z =a^b^/ Sab都不算难。如果使用 LISREL 进行分析 ,输出结果中可以找到本检验程序所需的全部检验统计量的值和检验结果 。下面看 一个实际例子。
图2   中介效应检验程序

04

学生行为对同伴关系影响的中介效应分析

要研究的是初中学生行为(X)对同伴关系(Y )的影响。变量及其数据来自香港中文大学张雷教授主持的儿童同伴关系研究, 本文只用到部分变量和数据 。有关的研究背景和量表及其施测方法等说明参见[18,19],这里只简单地介绍有关变量的含义和符号。学生行为(X)是被试的违纪捣乱行为 , 包括 9 个题目(如挑起争斗 、欺负同学、说脏话等), 同伴关系(Y )是被试受同学欢迎的程度 ,具体地说 ,就是同班同学有多少人将其列入喜欢的名单(每人所列的喜欢名录没有名额限制)。老师的管教方式(U) 是被试对班主任老师的管教方式的评价, 也有 9 个 题目(如班主任愿意听我们的意见 ,班主任的期望和要求明确清晰 , 等等)。老师对学生的喜欢程度 (W)由班主任为被试打分(从“ 一点都不喜欢” 到 “非常喜欢”5级记分)。被试人数 N =595 。由于潜变量和显变量的中介效应检验方法是一样的, 为简单起见,这里将上述变量都作为显变量处理(即用该变量包含的题目得分的平均值作为变量值)。所有变量都已经中心化 ,数据分析中只需要下面的协方 差矩阵:
使用广义最小二乘估计方法进行分析, 由于样本容量大, 广义最小二乘估计与极大似然估计的结果非常接近。
4 .1 教师喜欢程度的中介效应分析
假设我们认为学生行为会影响老师对他的喜欢程度 ,而同伴关系会受到老师喜欢程度的影响 ,则喜欢程度是中介变量。
喜欢程度(W)的中介效应分析结果见表 2 , 其中的结果是标准化解, 用小写字母代表相应变量的标准化变量。由于依次检验(指前面 3 个 t 检验)都 是显著的, 所以喜欢程度的中介效应显著。由于第四个t 检验也是显著,所以是部分中介效应 ,中介效应占总 效应的比例为 0.338 ×0.349/0.232 = 50.8 %。
表2 喜欢程度(W)的中介效应依次检验
上述包含了中介变量 W 的模型分析结果表 明 :一方面 ,学生行为对同伴关系有直接负效应, 即违纪捣乱行为多的同学 , 受同学欢迎的程度往往会低一点。另一方面, 学生行为通过教师喜欢程度对同伴关系有间接负效应 ,即违纪捣乱行为多的同学, 老师往往比较不喜欢, 而老师的态度会影响同学 ,使同学也比较不喜欢 。
4 .2 教师管教方式的中介效应分析 
假设我们认为学生的行为会影响老师的管教方式 ,而管教方式会影响同伴关系 ,则管教方式是中介变量。
管教方式(U)的中介效应分析结果(标准化解) 见表 3 。由于依次检验中的第二步检验不显著(即 u对 x 的回归系数不显著 , t =-0 .72 , p >0 .05),根据我们提出的检验程序, 需要做 Sobel 检验, 检验统计量是
此处a^=-0.030,Sa=0.041,b^=0.187,Sb=0.039,计算得z =-0.72 , p>0.05   。所以管教方式(U)的 中介效应不显著。
表3 管教方式(U)的中介效应依次检验

05

讨论和结语

5.1 讨论
虽然为了行文简便 , 本文前面只考虑一个自变量和一个中介变量的模型 ,但所提出的检验程序也适合有多个自变量或(和)多个中介变量的模型, 只是此时“完全中介”的概念没有多大意义 , 即不用考虑做“完全中介” 检验 。下面以两个自变量   X1 、X2  和两个中介变量 M1、M2 ,并且都含交互效应项[20](分别是   X1X2和 M1M2 )的模型为例加以说明 。
假设所有变量都已经中心化(即均值为零), 类似于方程(1)—(3)并加以推广, 可用下列方程来描述变量之间的关系 :
Y =c'1X1 +c'2X2 +c'3X1X2 +b1M1 +b2M2 + b3M1M2 +e3 在自变量和中介变量不止一个时 ,研究者首先要明确 ,感兴趣的是哪个自变量经过哪个中介变量的中介效应。然后找出哪些系数分别对应于本文提出的中介效应检验程序(图2)中的系数 c , a , b , c' , 就可以检验了(但不用检验 c' 的显著性)。例如, 要检验 X1 经过 M2 的中介效应是否显著,则与 c , a , b , c' 对应的分别是 c1 , a21 , b2 , c'1 ;要检验 X1X2 经过 M1 的中介效应是否显著, 则与  c , a , b , c' 对应的分别是 c3 , a13 , b1 , c'3 ;要检验 X2  经过 M1M2 的中介效应是否显著 , 则与  c , a , b , c'   对应的分别是 c2 , a32 , b3 , c'2 。在实际应用中 ,一般不会考虑经过M1M2 的中介效应 , 因为解释起来比较困难。如果画出了路径图 ,则容易从图上找出与 c , a , b , c'   对应的路径(系数)并用本文提出的检验程序加以检验。
还要注意的一点是, 当自变量或中介变量不止一个时 ,公式(4)不再成立。例如 ,要检验X1 经过 M2的中介效应是否显著 ,与 c , a , b , c' 对应的分别是 c1 , a21 , b2 , c'1 。此时 c1 =c' 1 +a21 b2一般来说是不成立的。
5 .2 结语 
在多变量分析中, 除了考虑自变量对因变量的影响外,经常还会涉及中介变量。例如 ,有间接效应的路径分析,其实已经涉及中介变量,但研究者如果不知道相应的概念和分析方法 , 自然不可能进行真正的中介效应分析(特别是中介效应的检验)。本文提出的中介效应检验程序 ,可以做部分中介效应和完全中介效应的检验 。由于同时考虑了两类错误率 ,该程序比单一的检验方法要好。而且, 该程序简单可行, 计算量少。该程序可以让读者避免在繁多的检验方法中无所适从 , 能够按部就班地进行中介效应的检验。
(0)

相关推荐