编辑推荐必火好文(一)

       这两天小编在整理期刊文章时候发现,期刊文章的关注度非常高,这让小编们一阵欣慰和感激。
       还有一些优质好文,由于小编推广不够,还没有“火起来,手心手背都是肉,为此,小编的内心充满了自责。
    
       现在小编就将这些文章推送给大家, 在这个春光明媚、草长莺飞的季节,愿大家都能汲取知识之精华,多发Top好文

温馨提示:点击题目可直达知网阅读,点击文末“阅读原文”可直达期刊官网免费阅读、下载

蛋鸡设施养殖环境质量评价预测模型构建方法及性能测试

引文格式:李华龙,李淼,詹凯,刘先旺,杨选将,胡泽林,郭盼盼.蛋鸡设施养殖环境质量评价预测模型构建方法及性能测试[J].智慧农业(中英文),2020,2(3):37-47.

关键词:蛋鸡设施养殖;环境质量评价;布谷鸟搜索算法优化神经网络(CS-BP);遗传算法优化BP神经网络(GA-BP);粒子群算法优化BP神经网络(PSO-BP);深度学习;多环境因子

向上滑动阅览摘要

蛋鸡设施养殖环境质量对蛋鸡的健康生长和生产性能的提升至关重要。蛋鸡养殖环境是多环境因子相互影响制约的复杂非线性系统,凭借单一的养殖环境参数难以对环境质量做出准确有效的评价。针对上述问题,本研究综合蛋鸡设施养殖环境的温度、湿度、光照强度、氨气浓度等多个环境影响因子,在布谷鸟搜索算法优化神经网络(CS-BP)预测模型的基础上,构建了改进的CS-BP的蛋鸡设施养殖环境质量评价预测模型。将构建的改进CS-BP预测模型与BP神经网络、遗传算法优化BP神经网络(GA-BP)、粒子群算法优化BP神经网络(PSO-BP) 3种深度学习方法进行性能参数分析比对,结果表明:改进CS-BP评价预测模型的平均绝对误差(MAE)、平均相对误差(MAPE)和决定系数(R~2)分别为0.0865、0.0159和0.8569,其各项指标性能均优于上述3种对比模型,该模型具有较强的模型泛化能力和较高的预测精度。对改进CS-BP的蛋鸡设施养殖环境质量评价模型进行测试,其分类准确率达0.9333以上。本研究构建的模型可以为蛋鸡设施养殖环境质量提供更加全面有效的科学评价,对实现蛋鸡生产环境的最优控制,促进蛋鸡生产性能的提升具有重要意义。

基于调制近红外反射光谱的土壤养分近场遥测方法研究

引文格式:矫雷子,董大明,赵贤德,田宏武.基于调制近红外反射光谱的土壤养分近场遥测方法研究[J].智慧农业(中英文),2020,2(2):59-66.

关键词:土壤氮素;近红外光谱;近场遥测;锁相放大;光电探测

向上滑动阅览摘要

土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、操作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到0.97。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到0.9,结果表明该方法具有土壤养分现场快速检测的能力。

蜂群多特征长期监测系统设计与试验研究

引文格式:洪葳,胥保华,刘升平.蜂群多特征长期监测系统设计与试验研究[J].智慧农业(中英文),2020,2(2):105-114.

关键词: 蜂群监测;智能蜂箱;多特征;智慧农业;物联网技术

向上滑动阅览摘要

目前,针对蜂群发生崩溃式消失的现象还缺乏有效的观测和分析手段。本研究在分析蜂群行为与检测特征的基础上,设计了一种基于物联网技术的蜂群多特征长期监测系统。该系统采用太阳能供电,融合了多种传感器,能够检测蜂群的多个特征(蜂箱内部的温度、湿度、蜂群重量、声音和蜜蜂的进出量),并利用无线数据同步传输技术将这些数据上传到远程云服务器中。基于该系统,本研究还进行了针对意大利蜜蜂从2018年秋季到2020年春季为期235天的长期连续监测试验,记录了蜂群在秋衰期、越冬期和春繁期蜂箱内部温度、湿度、蜂群重量、声音和进出量的逐小时的细致变化。试验结果表明,在此期间,蜂箱内的平均温度呈现从25℃下降到-5℃再回升至15℃的抛物线变化,相应的进出巢次数也由大约8万次/天减少至0次/天再增加至5万次/天。在越冬期中,蜂群的重量呈现出大约25 g/天的线性下降趋势,同时蜂箱内也更为安静,声音的频率集中于0~64 Hz。由此表明,在不干扰蜂群的情况下,该监测系统获得的特征数据能够有效地揭示蜂群的日常活动和趋势变化,可用来研究蜂群的行为生物学、探索崩溃式的蜂群消失成因以及发展精确化蜜蜂养殖业。

考虑日光温室空间异质性的黄瓜叶片湿润时间估算模型研究

引文格式:刘鉴,任爱新,刘冉,纪涛,刘慧英,李明.考虑日光温室空间异质性的黄瓜叶片湿润时间估算模型研究[J].智慧农业(中英文),2020,2(2):135-144.

关键词:日光温室;估算模型;区域化;叶片湿润时间;BP神经网络;传感器

向上滑动阅览摘要

叶片湿润时间(LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于2019年3月和9月在北京两个不同类型日光温室内按照棋盘格法设置了9个采样点部署温湿光传感器和目测叶片湿润时间,每隔1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明:BP神经网络模型在两个温室的试验条件下获得了相似的准确度(ACC为0.90和0.92),比相对湿度经验模型估算叶片湿润时间的准确度(ACC为0.82和0.84)更高,平均绝对误差MAE分别为1.81和1.61 h,均方根误差RSME分别为2.10和1.87,决定系数R2分别为0.87和0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间(12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间(4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为17.15和17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。

基于嵌入式系统的小麦条锈病远程监测平台设计与试验

引文格式:季云洲,都盛佳,纪同奎,宋怀波.基于嵌入式系统的小麦条锈病远程监测平台设计与试验[J].智慧农业,2019,1(3):100-112.

关键词:小麦条锈病;互联网+;嵌入式系统;远程监测;图像处理;孢子计数

向上滑动阅览摘要

为了实现小麦条锈病的远程实时监测,设计并搭建了基于嵌入式系统的小麦条锈病远程监测平台,实现了用户对大田小麦条锈病发病状况的实时监测。首先基于Arduino微控制器和42步进电机控制的六棱柱转轴和传送装置结合,通过蓝牙控制六棱柱转轴上的电磁吸附装置吸附金属加工后的载玻片设计了孢子捕捉器,实现了空气中小麦条锈病孢子图像的采集;其次,通过高倍光学显微镜和电子目镜将采集到的孢子图像通过Linux核心板上传至云端服务器,并通过基于Python的图像处理算法对图像进行中值滤波、边缘提取、角点检测等处理实现孢子计数;最后通过基于Android平台的应用软件实现远程查看孢子图像和计数处理结果。试验结果表明,该平台服务器图像处理算法可实现孢子的准确计数,对测试图像的计数准确率为100%,孢子捕捉器的玻片切换成功率为95%。该研究可为大田小麦条锈病的实时监测奠定基础,也可为大田内其他气传病害的监测提供借鉴。
(0)

相关推荐