| 论文:《ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer》
| 会议:ACL 2021
| 下载链接:https://arxiv.org/abs/2105.11741
| 开源代码:https://github.com/yym6472/ConSERT
1. 背景
句向量表示学习在自然语言处理(NLP)领域占据重要地位,许多NLP任务的成功离不开训练优质的句子表示向量。特别是在文本语义匹配(Semantic Textual Similarity)、文本向量检索(Dense Text Retrieval)等任务上,模型通过计算两个句子编码后的Embedding在表示空间的相似度来衡量这两个句子语义上的相关程度,从而决定其匹配分数。
有监督的句子表征学习方法:早期的工作发现自然语言推理(Natural Language Inference,NLI)任务对语义匹配任务有较大的帮助,他们使用BiLSTM编码器,融合了两个NLI的数据集SNLI和MNLI进行训练。Universal Sentence Encoder(USE)使用了基于Transformer的架构,并使用SNLI对无监督训练进行增强。SBERT进一步使用了一个共享的预训练的BERT编码器对两个句子进行编码,在NLI数据集上进行训练(Fine-tune)。
[1] Reimers, Nils, and Iryna Gurevych. 'Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.' Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.[2] Li, Bohan, et al. 'On the Sentence Embeddings from Pre-trained Language Models.' Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.[3] Gao, Jun, et al. 'Representation Degeneration Problem in Training Natural Language Generation Models.' International Conference on Learning Representations. 2018.[4] Wang, Lingxiao, et al. 'Improving Neural Language Generation with Spectrum Control.' International Conference on Learning Representations. 2019.[5] Conneau, Alexis, et al. 'Supervised Learning of Universal Sentence Representations from Natural Language Inference Data.' Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.[6] Cer, Daniel, et al. 'Universal Sentence Encoder for English.' Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2018.[7] Wang, Shuohang, et al. 'Cross-Thought for Sentence Encoder Pre-training.' Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.[8] Yang, Ziyi, et al. 'Universal Sentence Representation Learning with Conditional Masked Language Model.' arXiv preprint arXiv:2012.14388 (2020).[9] Lee, Haejun, et al. 'SLM: Learning a Discourse Language Representation with Sentence Unshuffling.' Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.[10] Su, Jianlin, et al. 'Whitening sentence representations for better semantics and faster retrieval.' arXiv preprint arXiv:2103.15316 (2021).[11] Gao, Tianyu, Xingcheng Yao, and Danqi Chen. 'SimCSE: Simple Contrastive Learning of Sentence Embeddings.' arXiv preprint arXiv:2104.08821 (2021).[12] Wu, Xing, et al. 'Conditional bert contextual augmentation.' International Conference on Computational Science. Springer, Cham, 2019.[13] Zhou, Wangchunshu, et al. 'BERT-based lexical substitution.' Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019.[14] He, Kaiming, et al. 'Momentum contrast for unsupervised visual representation learning.' Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.[15] Chen, Ting, et al. 'A simple framework for contrastive learning of visual representations.' International conference on machine learning. PMLR, 2020.[16] Zhang, Yan, et al. 'An Unsupervised Sentence Embedding Method by Mutual Information Maximization.' Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.[17] Fang, Hongchao, et al. 'Cert: Contrastive self-supervised learning for language understanding.' arXiv preprint arXiv:2005.12766 (2020).[18] Carlsson, Fredrik, et al. 'Semantic re-tuning with contrastive tension.' International Conference on Learning Representations. 2021.[19] Giorgi, John M., et al. 'Declutr: Deep contrastive learning for unsupervised textual representations.' arXiv preprint arXiv:2006.03659 (2020).[20] Wu, Zhuofeng, et al. 'CLEAR: Contrastive Learning for Sentence Representation.' arXiv preprint arXiv:2012.15466(2020).
本文作者
渊蒙、如寐、思睿、富峥、武威等,美团平台/搜索与NLP部。
徐蔚然,北京邮电大学人工智能学院,模式识别实验室,副教授,博士生导师。
---------- END ----------招聘信息美团搜索与NLP部,长期招聘算法工程师,坐标北京。欢迎感兴趣的同学发送简历至:tech@meituan.com(邮件标题注明:搜索与NLP部)