如图,正方形ABCD的边长是16,点E在边AB上,AE=3,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1中,当∠BEF=45°时,易知四边形BEB′F是正方形,推出BF=BE,由AB=BC,即可证明CF=AE=3.(2)如图2中,作B′N⊥BC于N,NB′的延长线交AD于M,作EG⊥MN于G,则四边形MNCD、四边形AEGM都是矩形.由△B′MD≌△B′CN,推出B′M=B′N=8,由AE=MG=3,推出GB′=5,在Rt△EGB′中,EG=12,由△EGB′∽△B′NF,由此即可解决问题.(3)如图3中,以E为圆心EB为半径画圆,在Rt△EBC中,∠EBC=90°,EB=13,BC=16,推出EC=5√17,由△CFB′的周长=CF+FB′+CB′=BF+CF+CB′=BC+CB′=16+CB′,所以欲求△CFB′的周长的最小值,只要求出CB′的最小值即可,因为CB′+EB′≥EC,所以E、B′、C共线时,CB′的值最小.
▷▷▷▷▷点我领取学习资料◁◁◁◁◁
您也可以登陆学习平台↓
第一中考(www.diyizhongkao.com)
↓点击原文,获取更多学习资料