寒假中考复习策略四:一次函数有关的实际应用问题

在往年中考数学当中,存在着不少与实际生活工作相关的应用问题,我们可通过建立一次函数的关系式y=kx+b(k≠0),可利用函数的增减性去解决问题,如当k<0时,一次函数是减函数,在自变量x的取值范围内,自变量x随着y的增大而减小,可根据自变量x的最小值或最大值而求得 y的最值;当k>0时,一次函数是增函数,在自变量x的取值范围内,自变量x随着y的增大而增大,可根据自变量x的最小值或最大值求得y的最值。

一次函数有关的实际应用问题,一般是以现实生活为背景,题型的内容紧密联系生活实际,对于缺少生活经验的学生来说,可能会存在一些困难。其实此类试题一般考查了三个知识点:

怎样求一次函数的解析式?

怎样解不等式、求出自变量x的取值范围?

怎样运用一次函数的增减性求最大值。

应用题的难度总体不高,但设计新颖、精巧、贴近生活,突出了考查基本方法和基础知识,突出了数学知识来源于生活,突出了应用数学的意识,有利于考查学生的思维和应变能力,因而通过解题,可让学生体会到数学的价值。

如下面这道应用问题就是和交通运输有关,非常贴近生活实际。

快车甲和慢车乙分别从A、B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之问的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:

(1)直接写出快、慢两车的速度及A、B两站间的距离;

(2)求快车从B 返回 A站时,y与x之间的函数关系式:

(3)出发几小时,两车相距200千米?请直接写出答案。

考点分析:

一次函数的应用。

题干分析:

(1)慢车的速度由快车到达B站后停留1小时,慢车行驶的路程880-800=80千米可求得:80÷1=80(千米/小时)。

快车的速度同两车相遇到快车到达B站的路程800-80×4=480千米,

时间4小时可求得: 480÷4=120(千米/小时)。

A、B两站间的距离由快车行驶10小时可求得:120×10=1200(千米)。

(2)求出点Q的坐标,用待定系数法分别求出PQ和QH的解析式即可。

(3)由C(0,1200),D(6,0),用待定系数法可得CD:y=-200x+1200。

当y=200时,x=5。

由D(6,0),E(10,800),用待定系数法可得DE:y=200x-1200。

当y=200时,x=7。

由QH:y=-200x+2520,当y=200时,x=58/3。

综上所述,出发5小时或7小时或3/58小时,两车相距200千米。

近年来的中考题中,有许多涉及到一次函数的应用题,这些题目关注社会改革,接近现实生活,较好地考查了学生分析问题、解决问题的能力。

一次函数问题大致可分为:

(1)运用图像信息,解答实际问题;

(2)求实际问题中的函数解析式;

(3)以经济核算为内容的方案比较;

(4)解决最值问题。

夏都花卉基地出售两种花卉,其中马蹄莲每株3.5元,康乃馨每株5元.如果同一客户所购的马蹄莲数量多于1000株,那么所有的马蹄莲每株还可优惠0.5元.现某鲜花店向夏都花卉基地采购马蹄莲800~1200株、康乃馨若干株,本次采购共用了7000元.然后再以马蹄莲每株4.5元、康乃馨每株7元的价格卖出,问:该鲜花店应如何采购这两种鲜花才能使获得的利润最大?

(注:800~1200株表示采购株数大于或等于800株,且小于或等于1200株;利润=销售所得金额﹣进货所需金额)

考点分析:

一次函数的应用。

题干分析:

设采购马蹄莲x株,由于马蹄莲数量大于1000株时,每株玫瑰降价0.5元,因此需分两种情况讨论即800≤x≤1000和1000<x≤1200.按照等量关系“采购马蹄莲的花费+采购康乃馨的花费=总花费”“毛利润=鲜花店卖出马蹄莲和康乃馨所获的总金额﹣购进马蹄莲和康乃馨的所需的总金额”,列出函数求得毛利润最大值。

一次函数及其图像是初中函数里重要内容,也是历年中考数学重点考查内容。中考考查一次函数题型有多种多样,如有考定义、求解析式,主要是判断一个函数是否为一次函数,这时候我们要从三个方面进行观察:

1、首先必须是整式;

2、次数,自变量的最高次数是否为一次;

3、系数,将函数化简后,自变量x的系数不为零。

根据两点定一直线,用待定系数法确定函数解析式的步骤是:

1、写出含有待定系数的方程;

2、把已知条件代入解析式,得到关于待定系数的方程(组);

3、解方程(组),求出待定系数;

4、将求得的待定系数的值代回所设的解析式。

同时我们要谨记,函数的类型与自变量所用的字母名称无关。

星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.

(1)8:00~8:30,燃气公司向储气罐注入了 8000米3的天然气;

(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式;

(3)正在排队等候的20辆车加完气后,储气罐内还有天然气 9600米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.

考点分析:

一次函数的应用,待定系数法,直线上点的坐标与方程的关系。

题干分析:

(1)由函数图象可知,8点时储气罐中有2000米3的天然气,8:30时储气罐中有10000米3的天然气,即可得出燃气公司向储气罐注入了8000米3的天然气。

(2)根据图象上点的坐标用待定系数法得出函数解析式即可。

(3)根据每车20米3的加气量,则20辆车加完气后,储气罐内还有天然气:

10000-20×20=9600(米3)。代入函数关系式即可得出所用时间。

(0)

相关推荐

  • 【八年级】一次函数“六求”

    【八年级】一次函数“六求”

  • 寒假中考复习策略二:要会解分类讨论有关的压轴题

    在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法. 分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述 ...

  • 浅谈“生活中的化学”中考复习策略(一)

    化学知识来源于生活,又服务于生活,化学是与生活联系极为密切的学科之一.在各种版本的初中化学教材中,都增加了"化学与生活"的独立章节.生活中的化学知识是近几年中考的热点,纵观近些年全 ...

  • 浅谈“生活中的化学”中考复习策略(二)

    三.重视开放性试题的训练 对于此类题目,因为考生所学的知识有限,所以也只能是浅层次地开放,因此做题时最关键的是要克服畏惧心理,建立自信心.从近些年的中考试题来看,开放性试题大致可以分为三类:(1)条件 ...

  • 浅谈初中化学中考复习策略

    首先,紧扣考点不离纲.所谓考点,指的是国家考试中心编制的考纲所规定的考试范围.复习伊始,我们就将复习计划印发给学生,这份计划确定了首轮基础知识复习的安排,以考纲规定的化学基础知识"五大块&q ...

  • 初三政治中考复习策略

    初三政治中考复习策略

  • 中考物理重点盲点复习策略

    结束新授课程,进入中考复习.复习分为三个阶段:第一轮复习,以课程标准为主线,以教材为本,解决基础知识和基本概念;第二轮复习以专题为主线,进行综合和专题复习,着重知识的迁移和应用;第三轮复习则以综合模拟 ...

  • 杭州中考复习到了最后关口,把握好这个策略很重要!

    2021年杭州中考还有一个多月就到来了,很多同学现在可能会出现一头雾水,拿起这个,放不下那个的心理,担心解题会出现失望,有的知识点也还有疑问,这最后一个月能不能解决这些难题和问题,相信不少同学和家长都 ...

  • 中考语文倒计时复习策略:别放过任何一个基础知识点,把考点分开练习,才能提高成绩……

    常看到中考语文逆袭的文章,最后一年努力用功,让语文考出了115分的好成绩.作为语文老师,我是不太相信的,当然也许是真的有天赋异禀的学生,能够用一年的时间,让语文从70分提高到115分,大部分同学,在最 ...

  • 中考复习四要四忌

    中考前如何进行复习才有利于知识的巩固和升华,有利于在中考中考出好成绩呢?通过多年的总结,我认为关键是要做到要四要四忌. 一. 内容方面 首先要熟悉教学大纲和考试说明,懂得考什么和不考什么,知道哪些内容 ...