初中数学选择题、填空题、压轴题解题技巧!含例题分析
01
选择题解题技巧
▼ 方法一:排除选项法
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
▼ 方法二:赋予特殊值法
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
▼ 方法三:通过猜想、测量的方法,直接观察或得出结果
这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
▼ 方法四:直接求解法
有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )
A 、160元 B、128元 C 、120元 D、 88元
▼ 方法五:数形结合法
解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
▼ 方法六:代入法
将选择支代入题干或题代入选择支进行检验,然后作出判断。
▼ 方法七:观察法
观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
▼ 方法八:枚举法
列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )
A.5种 B.6种 C.8种 D.10种
分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
▼ 方法九:待定系数法
要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
▼ 方法十:不完全归纳法
当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
02
填空题解题技巧
初中填空题主要题型一是定量型填空题,主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度;
二是定性型填空题,考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。
先阅读一段短文,在理解的基础上,要求解答有关的问题,是近年悄然兴起的阅读理解类填空题。
它不仅考查了学生阅读理解和整理知识的能力,同时提醒考生平时要克服读书囫囵吞枣、不求甚解的不良习惯。
这种新题型的出现,无疑给填空题较寂静的湖面投了一个小石子。
▼ 方法一:直接法
▼ 方法二:特例法
▼ 方法三:数形结合法
▼ 方法四:猜想法
▼ 方法五:整体法
▼ 方法六:构造法
▼ 方法七:图解法
▼ 方法八:等价转化法
▼ 方法九:观察法
03
压轴题解题技巧
▼ 函数型综合题
先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:
①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;
②反比例函数,它所对应的图像是双曲线;
③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
▼ 几何型综合题
先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:
在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
最后探索的问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
▼ 分类讨论题
分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:
1. 熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2. 讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3. 图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4. 代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5. 考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6. 函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7. 由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
在解数学综合题时我们要做到:
数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
▼ 四个秘诀
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题。
其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
▼ 答题技巧
定位准确防止“捡芝麻丢西瓜”
在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止。
回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
解数学压轴题,做一问是一问
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理。
尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。