Front Med:无创诊断非酒精性脂肪性肝病肝纤维化新方法
非酒精性脂肪性肝病(NAFLD),是中国最常见的慢性肝病之一,是肝脏代谢综合征的表现,影响着4亿多国人的健康。从肝脏本身损害来说,NAFLD可以引起脂肪性肝炎、肝纤维化、肝硬化甚至肝癌;从肝外损害来说,它可以引起高脂血症、高尿酸血症、高血压、糖尿病、冠心病、中风等。
准确可靠地评估NAFLD患者的肝纤维化程度是临床上一个非常重要的问题。Front Med近期刊登的绘云生物研究团队论文中提到,其开发的“LiveFbr”集成互联网工具,可通过相关参数值,无创、智能地诊断NAFLD患者的肝纤维化早期和晚期程度。
当前NAFLD患者肝纤维化诊断方法
评估NAFLD患者的肝纤维化程度,对疾病预后具有重要意义。当前,肝穿刺活检仍是诊断NAFLD患者肝纤维化进展的金标准,由于其有创性、不宜反复进行等固有缺点,这种侵入性诊断不能大规模在人群中进行。
在过去的十多年中,有许多基于血液标志物的非侵入性方法,在一些国家和地区被推荐作为诊断肝纤维化和肝硬化的辅助方法,但这些技术仍有很多突破空间,还需要进一步研究和验证,以找到更简单、易行和准确性高的诊断技术和方法。

随着生物医学数据量的增加和人工智能的普及,机器学习方法已被积极用于开发各种疾病状态评估工具,有助于研究出更准确的非侵入性的检测方法,对疾病监测和治疗发挥着至关重要的作用,LiveFbr应运而生。
LiveFbr—NAFLD肝纤维化评估新方法
绘云生物研究团队应用先进的机器学习方法,开发套用于生物学研究和临床应用的集成互联网工具LiveFbr,可无创评估NAFLD肝纤维化程度,患者输入相关参数值可即时获得评估结果。

LiveFbr核心是:首先,基于发现集样本血液标志物,根据筛选出的参数集构建逻辑回归(Logistic Regression简称LR)评分模型,进一步在独立的数据集上验证模型的有效性。
在此研究中,共有784名经肝活检确诊的NAFLD早期和晚期肝纤维化患者,他们分别来自中国(n=540)、马来西亚(n=147)和印度(n=97),分为3个独立队列,参与LR模型的构建和验证。
LR模型的构建与验证
在此模型参数的选择上,通过以下两个步骤来选择最佳参数集:
首先,通过逻辑回归、ROC和假设检验的方法进行临床参数的预选,18个参数中有14个通过筛选,它们分别是年龄、性别、AST、ALT、AST/ALT比值、AST/PLT比值、DM/IFG、PLT、BMI 、FBG(空腹血糖)、GGT(γ-谷氨酰转肽酶)、TG(甘油三酯)、LDL(低密度脂蛋白)、HbA1c(糖化血红蛋白)。
其次,使用参数数量与auPR+auROC的值、准确性、F1得分进行权衡,选择出8个最优参数,包括年龄、ALT、BMI、DM/IFG、FBG、GGT、TG、AST/PLT比值。
最后,根据发现的最优参数集,构建了一个逻辑回归(LR)模型来区分NAFLD患者的早期和晚期纤维化。

LiveFbr设计流程图
通过数据表明,与FIB-4和NFS相比,该LR模型的诊断性能最佳。
另外,将LR模型与其它机器学习方法,如随机森林(RF)和梯度提升(GB)进行比较,用最优参数集分别建立了LR、RF和GB模型,验证集的结果显示, LR模型比RF和GB模型具有更高的auROC、auPR和灵敏度值。在模型独立性评估上,也进一步证实了LR模型的可靠性。


总的来说,研究团队通过784名参与者的三个独立数据集评估建立的逻辑回归模型(LR)用于区分早期和晚期肝纤维化的性能。结果显示,该模型的性能与一些机器学习的诊断方法能力相当并且优势明显。该研究也具有一定的局限性:
不同病因的慢性肝病患者纤维化进展方式不尽相同,因此该研究所建立的LR模型不能直接用于其他慢性肝病患者。此外,还需要开发相应的诊断工具,对各种病因的慢性肝病患者的不同血液的参数模式进行检测。纵向研究也是必要的,这样才可以进一步验证当前发现的有效性和稳定性。该研究所建立的LR模型仅对东南亚的样本进行验证,在临床应用之前,有必要在更多不同人群中作进一步验证。
相关论文发表在Front. Med. - Translational Medicine:
Chao Sang, Hongmei Yan, Wah Kheong Chan, Xiaopeng Zhu, Tao Sun, Xinxia Chang, Mingfeng Xia, Xiaoyang Sun, Xiqi Hu, Xin Gao, Wei Jia, Hua Bian, Tianlu Chen, Guoxiang Xie. Diagnosis of fibrosis using blood markers and logistic regression in Southeast Asian patients with nonalcoholic fatty liver disease. Front. Med. - Translational Medicine. 2021, 8: 637652.