初中数学解题思路
本号致力于初中数学学习的钻研和探索。全面覆盖初中数学典型题集、解题模型、动点最值、思路方法、超级易错、几何辅助线、压轴破解等方面,欢迎关注!
176篇原创内容
公众号
关注本公众号并回复“初中数学解题思路”可下载各种word版资料,持续更新中!点的存在性问题,在中考压轴题中非常普遍。比如因动点产生的平行四边形问题、因动点产生的线段和差问题、因动点产生的全等三角形问题、因动点产生的等腰三角形。这些动点产生的几何图形问题可谓十分的普遍,难度系数究竟怎么样?又有什么规律可遵循?下面,从动点产生的等腰三角形出发,分析探究这一点的存在性问题。等腰三角形的性质:(1)等边对等角;(2)三线合一.而等腰三角形还有一点要特别注意:不确定性!①边的不确定性;②角的不确定性。当给出等腰三角形的一条边时,我们要确定这条边到底是腰还是底边,同时还要确保三角形的两边之和大于第三边,三角形的两边之差小于第三边。如果边不确定,那么一定要分类讨论!当给出等腰三角形的一个角时,也要确定这个角是底角还是顶角。如果题中没有明显说明,那么一定要分类讨论!因此,分类讨论思想是动点产生的等腰三角形问题中非常重要的思想方法!如图,线段AB与直线l交于点B且AB不与直线l垂直 ,请在l上找 一点P,使△ABP为等腰三角形,请在图中尺规作图画出所有符合要求的点P,保留作图痕迹.(1)当角A为顶角, 即AB=AP 时,如图①,以点A为圆心、AB 为半径画 弧,与直线l的交点即为点P1.(2)当角 B为顶角,即 BA=BP 时,如图②,以点B为圆心、AB 为半径画弧,与直线l的交点即为点P2 ,P3 .(3)当角P为顶角,即 PA=PB时,如图③,作线段AB 的垂直平分线,与直线 l 的交点即为点P4.2. 解题策略:应用前文总结的解题策略(如设点的坐标,做垂线,证相似,成比例列式...等方法)求解.详见典型例题分析.
【典型例题1】中考真题.综合与探究
如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.
(2)若要△FOE≌△FCE,需 OF=CF,则点 F 在OC的中垂线上,可得点F纵坐标为﹣4.(3)利用前文我们学习过的解题方法策略:设点的坐标,做垂线,证相似,成比例列式求解.
①当OP=OQ时,△OPQ是等腰三角形.得出Q点的坐标,从Q点向坐标轴做垂线,成相似三角形,根据对应边成比例列式求解.
②当QO=QP时,△POQ是等腰三角形,同上,得出Q点的坐标,从Q点向坐标轴做垂线,成相似三角形,根据对应边成比例列式求解.
③当PO=PQ时,不存在.