利用勾股定理确定最短路径问题

我们知道,两点之间线段最短,但这两点之间的距离往往要通过适当的知识求出其大小,现介绍一种方法,用勾股定理确定最短问题.

例1如图1,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(  )

分析 根据“两点之间,线段最短”和“勾股定理”,蚂蚁如果要沿着长方体的表面从点A爬到点B,较短爬行路线有如图2所示的4条粗线段表示的距离.可以通过计算得知最短的是第2条.

说明 在立体图形上找最短距离,通常要把立体图形转化为平面图形,即转化为表面展开图来解答,但是不同的展开图会有不同的答案,所以要分情况讨论.

例2如图1,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要___cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要___cm.

分析 要求最短细线的长,得先能确定最短线路,于是,可画出长方体的侧面展开图,利用两点之间线段最短,结合勾股定理求得.若从点A开始经过4个侧面缠绕n圈到达点B,即相当于长方体的侧面展开图的一边长由3+1+3+1变成n(3+1+3+1),同样可以用勾股定理求解.

说明 对于从点A开始经过4个侧面缠绕n圈到达点B的最短细线不能理解为就是n个底面周长.

(3)若一辆大货车在限速路上由C处向西行驶,一辆小汽车在高等级公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?

例4恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km,AB到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向AB两景区运送游客.小民设计了两种方案,图1是方案一的示意图(AP与直线X垂直,垂足为P),PAB的距离之和S1PA+PB,图2是方案二的示意图(点A关于直线X的对称点是A′,连接BA′交直线X于点P),PAB的距离之和S2PA+PB.

(1)求S1S2,并比较它们的大小;

(2)请你说明S2PA+PB的值为最小;

(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图3所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区PQ,使PABQ组成的四边形的周长最小.并求出这个最小值.

(0)

相关推荐