Mini专题|苹果智能检测识别
Mini专题15:苹果智能检测识别
1
CAO Yudong, QI Weiyan, LI Xian, LI Zhemin. Research progress and prospect on non-destructive detection and quality grading technology of apple[J]. Smart Agriculture, 2019, 1(3): 29-45. (in Chinese with English abstract)
2
江梅, 孙飒爽, 何东健, 宋怀波. 融合K-means聚类分割算法与凸壳原理的遮挡苹果目标识别与定位方法[J]. 智慧农业, 2019, 1(2): 45-54.
JIANG Mei, SUN Sashuang, HE Dongjian, SONG Huaibo. Recognition and localization method of occluded apples based on K-means clustering segmentation algorithm and convex hull theory[J]. Smart Agriculture, 2019, 1(2): 45-54. (in Chinese with English abstract)
摘要:自然场景下苹果目标的精确识别与定位是智慧农业信息感知与获取领域的重要内容。为了解决自然场景下苹果目标识别与定位易受枝叶遮挡的问题,在K-means聚类分割算法的基础上,提出了基于凸壳原理的目标识别算法,并与基于去伪轮廓的目标识别算法和全轮廓拟合目标识别算法作了对比。基于凸壳原理的目标识别算法利用了苹果近似圆形的形状特性,结合K-means算法与最大类间方差算法将果实与背景分离,由凸壳原理得到果实目标的凸壳多边形,对凸壳多边形进行圆拟合,标定出果实位置。为验证算法有效性,对自然场景下的157幅苹果图像进行了测试,基于凸壳原理的目标识别算法、基于去伪轮廓的目标识别方法和全轮廓拟合目标识别方法的重叠率均值分别为83.7%、79.5%和70.3%,假阳性率均值分别为2.9%、1.7%和1.2%,假阴性率均值分别为16.3%、20.5%和29.7%。结果表明,与上面两种对比算法相比较,基于凸壳原理的目标识别算法识别效果更好且无识别错误的情况,该算法可为自然环境下的果实识别与分割问题提供借鉴与参考。
3
夏雪, 孙琦鑫, 侍啸, 柴秀娟. 基于轻量级无锚点深度卷积神经网络的树上苹果检测模型[J]. 智慧农业(中英文), 2020, 2(1): 99-110.
XIA Xue, SUN Qixin, SHI Xiao, CHAI Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network[J]. Smart Agriculture, 2020, 2(1): 99-110. (in Chinese with English abstract)
摘要:为提高现有苹果目标检测模型在硬件资源受限制条件下的性能和适应性,实现在保持较高检测精度的同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用的目的,本研究通过改进轻量级的MobileNetV3网络,结合关键点预测的目标检测网络(CenterNet),构建了用于苹果检测的轻量级无锚点深度学习网络模型(M-CenterNet),并通过与CenterNet和单次多重检测器(Single Shot Multibox Detector,SSD)网络比较了模型的检测精度、模型容量和运行速度等方面的综合性能。对模型的测试结果表明,本研究模型的平均精度、误检率和漏检率分别为88.9%、10.9%和5.8%;模型体积和帧率分别为14.2MB和8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好的果实检测效果和适应能力。在检测精度相当的情况下,所提网络模型体积仅为CenterNet网络的1/4;相比于SSD网络,所提网络模型的AP提升了3.9%,模型体积降低了84.3%;本网络模型在CPU环境中的运行速度比CenterNet和SSD网络提高了近1倍。研究结果可为非结构环境下果园作业平台的轻量化果实目标检测模型研究提供新的思路。
温馨提示:如果您不在中国知网服务范围内,可进入期刊官方网站:
免费下载。