在R语言中实现sem进行结构方程建模和路径图可视化

原文链接: http://tecdat.cn/?p=23312

引言

结构方程模型是一个线性模型框架,它对潜变量同时进行回归方程建模。 诸如线性回归、多元回归、路径分析、确认性因子分析和结构回归等模型都可以被认为是SEM的特例。在SEM中可能存在以下关系。

  • 观察到的变量与观察到的变量之间的关系(γ,如回归)。

  • 潜变量与观察变量(λ,如确认性因子分析)。

  • 潜变量与潜变量(γ,β,如结构回归)。

SEM独特地包含了测量和结构模型。测量模型将观测变量与潜变量联系起来,结构模型将潜变量与潜变量联系起来。目前有多种软件处理SEM模型,包括Mplus、EQS、SAS PROC CALIS、Stata的sem和最近的R的lavaan。R的好处是它是开源的,可以免费使用,而且相对容易使用。

本文将介绍属于SEM框架的最常见的模型,包括

  • 简单回归

  • 多元回归

  • 多变量回归

  • 路径分析

  • 确认性因素分析

  • 结构回归

目的是在每个模型中介绍其

  • 矩阵表述

  • 路径图

  • lavaan语法

  • 参数和输出

在这次训练结束时,你应该能够理解这些概念,足以正确识别模型,认识矩阵表述中的每个参数,并解释每个模型的输出。

语法简介

语法一:f3~f1+f2(路径模型)

结构方程模型的路径部分可以看作是一个回归方程。而在R中,回归方程可以表示为y~ax1+bx2+c,“~”的左边的因变量,右边是自变量,“+”把多个自变量组合在一起。那么把y看作是内生潜变量,把x看作是外生潜变量,略去截距,就构成了语法一。

语法二:f1 =~ item1 + item2 + item3(测量模型)

"=~"的左边是潜变量,右边是观测变量,整句理解为潜变量f1由观测变量item1、item2和item3表现。

语法三:item1 item1 , item1 item2

"~~"的两边相同,表示该变量的方差,不同的话表示两者的协方差

语法四:f1 ~ 1

表示截距

基础知识

加载数据

在这种情况下,我们将模拟数据。

y ~ .5*f  #有外部标准的回归强度

f =~ .8\*x1 + .8\*x2 + .8\*x3 + .8\*x4 + .8*x5  #定义因子f,在5个项目上的载荷。

x1 ~~ (1-.8^2)*x1 #残差。请注意,通过使用1平方的载荷,我们在每个指标中实现了1.0的总变异性(标准化的)。
......

#产生数据;注意,标准化的lv是默认的
simData

#看一下数据
describe(simData)\[,1:4\]

指定模型

y ~ f # "~回归"
f =~ x1+ x2 + x3 + x4 + x5 # "=~被测量的是"
x1 ~~ x1 # 方差
x2 ~~ x2 #方差
x3~~x3 #变量
x4~~x4 #变量
x5~~x5 #变量
#x4~~x5将是协方差的一个例子

拟合模型

summary(model_m)

inspect(model_m)

Paths

路径分析

与上述步骤相同,但主要侧重于回归路径。值得注意的是这种方法对调节分析的效用。

##加载数据
set.seed(1234)

Data <- data.frame(X = X, Y = Y, M = M)

指定模型

# 直接效应
             Y ~ c*X #使用字符来命名回归路径
           # 调节变量
             M ~ a*X
             Y ~ b*M
           # 间接效应(a*b)
             ab := a*b #定义新参数
           # 总效应
             total := c + (a*b) #使用":="定义新参数

拟合模型

summary(model_m)

Paths(model)

间接效应的Bootstrapping置信区间

除了指定对5000个样本的标准误差进行bootstrapping外,下面的语法还指出标准误差应进行偏差校正(但不是accelearted)。这种方法将产生与SPSS中的PROCESS宏程序类似的结果,即对标准误差进行偏差修正。

sem(medmodel,se = "bootstrap")

确认性因素分析

加载数据

我们将使用例子中的相同数据

指定模型

'
f =~ x1 + x2 + x3 +x4 + x5
x1~~x1
x2~~x2
x3~~x3
x4~~x4
x5~~x5
'

拟合模型

sem(fit, simData)

Paths(fit)

anova

正如各模型的LRT所示,sem()和cfa()是具有相同默认值的软件包。CFA可以很容易地使用cfa()或sem()完成 结构方程模型

加载数据

在这种情况下,我将模拟数据。

#结构成分
y ~ .5\*f1 + .7\*f2 #用外部标准回归的强度

#测量部分
f1 =~ .8\*x1 + .6\*x2 + .7\*x3 + .8\*x4 + .75*x5 #定义因子f,在5个项目上的载荷。

x1 ~~ (1-.8^2)*x1 #残差。注意,通过使用1平方的载荷,我们实现了每个指标的总变异性为1.0(标准化)。
...

#生成数据;注意,标准化的lv是默认的
sim <- sim(tosim)

#看一下数据
describe(sim )

指定模型

测试正确的模型

#结构性
y ~ f1+ f2
#测量
f1 =~ x1 + x2 + x3 + x4 + x5 
f2 =~ x6 + x7

测试不正确的模型。假设我们错误地认为X4和X5负载于因子2。

incorrect
#结构性
y ~ f1+ f2
#测量
f1 =~ x1 + x2 + x3 
f2 =~ x6 + x7 + x4 + x5

拟合模型

正确的模型

summary(model_m)

不正确的模型

summary(incorrectmodel_m, fit.measures = TRUE)

比较模型

正确模型

不正确模型

Paths(incorrec)

anova

除了不正确模型的整体拟合指数较差--如CFI<0.95,RMSEA>0.06,SRMR>0.08和Chi-square test<0.05所示,正确模型也优于不正确模型,如正确模型的AIC和BIC低得多所示。


(0)

相关推荐