Simulating Minimum Shift Keying Transmitter
Minimum shift keying (MSK) is an important concept to learn in digital communications. It is a form of continuous phase frequency shift keying . In minimum phase shift keying, two key concepts are used.
(a) The frequency separation of the sinusoidals used for representing bits 1′s and 0′s are
, where
is the symbol period.
(b) It is ensured that the resulting waveform is phase continuous.
Motivation of continuous phase
In a previous post (here), we have understood that the minimum frequency separation for two sinusoidals having zero phase difference to be orthogonal is
, where
is the symbol period. However, it can be observed that at each symbol boundary, there is a phase discontinuity. The presence of phase discontinuities can result in large spectral side lobes outside the desired bandwidth. Hence the need for having a frequency modulated signal which is phase continuous.
Phase growth in MSK
To ensure continuous phase, the phase of the carrier of the MSK signal is
, where
is the symbol period,
corresponds to -1 for bit 0, +1 for bit 1 respectively.
The corresponding carrier signal is
.
Figure: Phase transition diagram for MSK (Ref: Fig10.22 in [COMM-PS]
Simulation Model
Simple Octave/Matlab code for simulating and plotting binary Minimum Shift Keying is kept here.
Next steps
We have observed that bit error probability of classical coherent binary frequency shift keying is 3dB poorer compared to bit error probability of binary phase shift keying. However, in minimum shift keying, using the knowledge of the phase transitions, we should be able to recover the 3dB loss associated with FSK and get a performance comparable to BPSK. We will hopefully discuss that in a future post.
Reference
[COMM-PS] Communication Systems Engineering, John G. Proakis, Masoud Salehi
Please click here to SUBSCRIBE to newsletter and download the FREE e-Book on probability of error in AWGN. Thanks for visiting! Happy learning.
Related posts:
D id you like this article? Make sure that you do not miss a new article by subscribing to RSS feed OR subscribing to e-mail newsletter. Note: Subscribing via e-mail entitles you to download the free e-Book on BER of BPSK/QPSK/16QAM/16PSK in AWGN.