二元一次方程的定义
二元一次方程:
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
二元一次方程的一般形式:ax+by+c=0其中a、b不为零。
二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解 。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
二元一次方程的一般形式:ax+by+c=0其中a、b不为零。
二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解 。
◎ 二元一次方程的定义的知识扩展
1、定义:含有两个未知数,并且含未知数的项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解 。
2、二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解 。
◎ 二元一次方程的定义的特性
二元一次方程的特点:
1.在方程中“元”是指未知数,“二元”是指方程中有且只有两个未知数。
2.未知数的项的次数是1,指的是含有未知数的项(单项式)的次数是1,如3xy的次数是2,所以方程3xy-2=0不是二元一次方程。
3.二元一次方程的左边和右边都必须是整式,例如方程1/x-y=1的左边不是整式,所以她不是二元一次方程。
1.在方程中“元”是指未知数,“二元”是指方程中有且只有两个未知数。
2.未知数的项的次数是1,指的是含有未知数的项(单项式)的次数是1,如3xy的次数是2,所以方程3xy-2=0不是二元一次方程。
3.二元一次方程的左边和右边都必须是整式,例如方程1/x-y=1的左边不是整式,所以她不是二元一次方程。
二元一次方程的解的特点:
1.二元一次方程的每个解都包括两个未知数的值,是一对数值,而不是一个数值,如x=7不是方程x+y=18的一个解,而
才是方程x+y=18的一个解。
2.二元一次方程的解是具有相关性的一对未知数的值,二者相互制约,相互对应,不独立存在,当其中一个未知数的值确定以后,另一个未知数的值也确定了。
3.一般情况下,一个二元一次方程有无数个解,如方程x+y=18的解还可以是
等等。
◎ 二元一次方程的定义的知识点拨
二元一次方程的判定标准:
1.二元:有两个未知数
2.一次:未知数的系数为1
3.整式方程:分母不含未知数
1.二元:有两个未知数
2.一次:未知数的系数为1
3.整式方程:分母不含未知数
◎ 二元一次方程的定义的教学目标
1、了解二元一次方程概念,二元一次方程的解的概念和解的不唯一性。
2、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
3、培养学生发现问题的意识和能力,增强学生的好奇心和求知欲。
2、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
3、培养学生发现问题的意识和能力,增强学生的好奇心和求知欲。
◎ 二元一次方程的定义的考试要求
能力要求:了解
课时要求:30
考试频率:少考
分值比重:2
课时要求:30
考试频率:少考
分值比重:2
赞 (0)