【储能科学与技术专刊文章】高强合金钢飞轮转子材料结构分析与应用

作者:戴兴建1,2  胡东旭1,2  张志来3  陈海生1,2,3,4  朱阳历4单位:1. 中国科学院工程热物理研究所;2. 中国科学院大学;3. 中科南京未来能源系统研究院;4. 毕节高新技术产业开发区国家能源大规模物理储能技术研发中心引用: 戴兴建,胡东旭,张志来等.高强合金钢飞轮转子材料结构分析与应用[J].储能科学与技术,2021,10(05):1667-1673.DOI:10.19799/j.cnki.2095-4239.2021.0260摘 要 :与纤维增强复合材料相比,高强合金钢飞轮具有材料成熟、制造难度较低的优点,适用于对转子重量约束不强的飞轮储能转子轴系。本文分析了典型高强钢圆盘飞轮的储能密度、材料强度需求和动能储存材料成本。在考虑热处理淬透性、储能量等需求的基础上,设计了50 kW·h、7.5 kW·h两种飞轮结构,其中50 kW·h飞轮6000 r/min,圆周线速度376.8 m/s;7.5 kW·h飞轮转速18000 r/min,圆周线速度433.5 m/s,有限元应力分析表明其强度安全。研制了400 kW、7.5 kW·h工程试验样机,测试转速达18000 r/min,转子动能27 MJ。通过现场高速动平衡,轴系的最大振动幅值从70 μm降低到了20 μm以下,降低幅值达到70%。9000~18000~9000 r/min充、放电过程中输入电能21.5 MJ,输出电能19.5 MJ。关键词 :飞轮储能;高强合金钢;有限元分析;样机测近年来,我国为了积极应对全球气候变化的挑战,提出了“碳达峰、碳中和”的绿色低碳发展目标。实现碳达峰、碳中和的目标,不仅仅意味着节能减排,更需要实现能源结构上的转型。大力发展风能、太阳能等可再生能源是实现这一目标的重要方式。由于风电、光伏发电具有天然的波动性特点,直接并网会大幅增加电网调峰调频的压力。应用储能系统能够很好地应对可再生能源频率波动给电网带来的影响,其中飞轮储能技术具有快响应、高频率、长寿命和环境友好等特点而广泛应用于不间断电源、电网调频、车辆动能再生、新能源并网等多个领域。飞轮转子的储能性能主要由3个因素决定,即材料强度、结构形状和转速。材料强度直接决定了与飞轮转子转速结合后能够平稳运行的动能水平。目前,已有众多学者针对飞轮转子结构形状进行了应力分析和设计优化。Lautenschlager等基于平面应力理论,以应力最小化和储能最大化为目标,采用实验设计(BOE)方法对金属材料飞轮厚度进行优化设计。任正义等以更轻的飞轮质量、更大的极转动惯量以及更小的应力应变为目标,基于多目标遗传算法对飞轮转子形状进行优化,优化后的飞轮转子相比于原模型性能更优。武鑫等在保证储能总量、转子转速和直径不变的前提下,将金属转子等厚度结构设计成变厚度结构,并通过响应曲面优化法对结构进行优化,优化后的转子降低质量的同时提高了系统储能密度。兰晨等利用Ansys Workbench有限元分析对两种变厚度空心飞轮进行应力分析,分析了轮缘高度变化对两种飞轮模型飞轮应力以及飞轮变形量的影响。赵宇兰等设计一种近似等应力的阶梯变截面金属材料飞轮转子结构,以获得更高的储能密度;同时,采用一体化外转子飞轮方案有效解决了飞轮转子轴向长度对转子动力力学特性的影响,并提高了飞轮储能系统结构紧凑性。Hu等分析比较了包括飞轮储能在内的物理储能的经济特性,表明相较于其他物理储能,飞轮储能的经济性较差,这更凸显了优化飞轮结构、降低单位储能量成本的重要性。本文以不同型号的高强度合金钢飞轮为研究对象,讨论了在应力约束下不同材料的储质量储能密度和成本储能密度,并对50 kW·h中低转速的飞轮和7 kW·h高转速飞轮的结构设计进行分析和讨论。最后,开展了飞轮储能样机的磁悬浮、充放电运行测试。1 合金钢飞轮材料应用分析当前,在飞轮储能应用领域,飞轮的材质主要分为合金钢飞轮、合金钢芯轴和复合材料组合两种不同形式。本小节将主要分析不同工况条件下合金钢飞轮材料选型、动力成本等问题。匀质合金钢飞轮理论最高储能密度

式中,e为飞轮储能密度;E为飞轮储能量;m为飞轮质量;J为飞轮转动惯量;ω为飞轮旋转角速度;R和r分别为飞轮外半径和内半径。当内半径r趋近与外半径R的薄壁圆环条件下

式中,v为边缘圆周线速度,这时飞轮相当于以v高速运动的质量m。从制造工艺以及飞轮结构设计考虑,采用等厚度圆盘工程实践性较强,即飞轮的内半径r=0。实心圆盘合金钢理论最高储能密度

外缘线速度为v的薄壁圆环和实心圆盘的最大应力分别为

式中,σmax为飞轮最大应力;ρ为材料密度;μ为材料泊松比。于是得到不同圆周速度参数下,对合金钢材料的强度要求见表1,其中屈服强度安全系数取1.6,抗拉强度安全系数取2.0。根据表1分析,高强合金钢飞轮结构材料成本为1.5~2.4元/(W·h)。表1   不同圆周速度下合金钢材料需求

2 飞轮结构设计2.1 储能50 kW·h飞轮结构设计从高强合金钢材料的成熟工业应用考虑,选用储能10 W·h/kg的钢种,比如30Cr2Ni4MoV作为大型超超临界汽轮机组广泛采用的低压转子用钢,具有良好的淬透性,优良的力学性能。良好的淬透性和力学性能可以避免飞轮体在运行时因局部应力过大造成疲劳损失或局部材料失效。储能50 kW·h,则需要质量约5000 kg,飞轮外缘圆周线速度约为360m/s。考虑电机、轴承和锻造工程实践等设计约束,旋转角速度确定为6000 r/min,飞轮直径确定为1200 mm,高度563 mm的飞轮圆盘质量为5000 kg,最后确定圆周速度为376.8 m/s。考虑到淬透性,如果整个飞轮体整体锻造,会因为飞轮体积过大,使得热处理不均匀,影响整体材料尤其是内部的力学性能。因此采用锻后中间开槽,得出如图1所示的飞轮锻件设计。

图1   50 kW·h飞轮结构2.2 储能7 kW·h高转速飞轮结构设计为研究与高速电机、磁悬浮的优势,与2.1节的圆盘不同,采用了高旋转角速度的轴结构设计方案,验证高强度钢的实用性,确定转速18000 r/min,飞轮直径460 mm,圆周线速度433.5 m/s,对材料的要求为GPa级强度的超强钢。飞轮外径460 mm,飞轮轴向长度435 mm,融合芯轴总长1780 mm,总转动惯量15 kg·m2,质量750 kg,18000 r/min储能7.4 kW·h,材料3元/(W·h),制造费用1.4元/(W·h)(1.3 m的轴段增加了材料和制造成本),结构如图2所示。

图2   7 kW·h飞轮结构2.3 飞轮段应力及形变有限元分析为了更准确地评估飞轮的应力情况,对飞轮三维建模,进行有限元分析。图3为50 kW·h飞轮三维建模及网格划分,网格总数约153万个,节点数约233万个;图4为7 kW·h飞轮三维建模及网格划分,网格总数约13万个,节点数约23万个,为了提高计算结果的准确性,对局部进行网格加密处理。仿真分析时,根据实际情况,分别对50 kW·h飞轮和7 kW·h施加6000 r/min转速和18000 r/min转速。

图3   50 kW·h飞轮三维建模及网格划分

图4   7 kW·h飞轮三维建模及网格划分由图5可知,50 kW·h飞轮体的最大应力为716 MPa,位于飞轮体内部的倒角处。整体上,飞轮体应力从轴芯到外沿逐渐变小,轴芯位置应力约为450~500 MPa,外沿应力约为192 MPa。在实际运行中,由于离心力是飞轮体产生形变的主要原因,因此飞轮体的径向形变在整体形变中占主要部分。由图6可知,径向最大形变为0.58 mm,从轴芯位置到外沿逐渐增大。

图5   50 kW·h飞轮应力云图

图6   50 kW·h飞轮径向形变量图7和图8分别给出了7 kW·h飞轮体的应力云图和径向形变云图。由图7可知,7 kW·h飞轮体的最大应力为1101 MPa,位于飞轮体内部的倒角处,为局部应力集中,通过增加倒角半径到8 mm(初始为5 mm),可以减少到971 MPa。与50 kW·h飞轮体同样,在整体上,飞轮体应力从轴芯到外沿逐渐变小,轴芯位置应力约为550 MPa,外沿应力约为280 MPa。可以看出,无论是最大应力值,还是整体应力分布情况,7 kW·h飞轮体的应力均大于50 kW·h飞轮体的飞轮应力。由图6可知,径向最大形变为0.30 mm,从轴芯位置到外沿逐渐增大。

图7   7kW·h飞轮应力云图

图8   7 kW·h飞轮径向形变量

图9   倒角为8 mm时7 kW·h飞轮应力云图3 高速飞轮储能工程样机测试基于储能25 MJ合金钢飞轮材料及结构设计,完成了5自由度磁悬浮飞轮电机轴系结构和转子动力学设计、机组总体设计,北京泓慧国际能源技术有限公司研制了配套的400 kW飞轮单机及其变流器系统,开展磁悬浮、充放电运行测试。如图10所示。

图10   5自由度磁悬浮飞轮电机轴系以及飞轮储能机组本体在充放电测试中,轴系在190 r/s附近存在振动峰值,且幅值较大,表明此处存在临界转速共振区域。因此,有针对性地对高速本机轴系进行了现场高速动平衡,图11给出了高速本机动平衡前后同步振动位移对比。结果显示,通过现场高速动平衡,轴系的最大振动幅值从70 μm降低到了20 μm以下,降低幅值达到70%。表明了现场高速动平衡效果显著,为今后类似磁悬浮轴系如何平稳通过临界转速提供借鉴。

图11   高速本机动平衡前后同步振动位移对比对图12中的功率数据对时间历程积分运算,得到9000~18000 r/min升速过程中输入电能21.5 MJ,18000~9000 r/min降速过程中输出电能19.5 MJ,能量效率达到90.7%。按充电效率94%、发电效率96.5%估计,18000 r/min转子动能为26.95 MJ。转子动能的计算式为

)其中,0.75表示放电的深度,0.94为出点效率。

图12   180~230 kW充放电循环功率(储能系统变流器交流侧)根据三维建模核算,转子的转动惯量为J=15.41 kg·m²,则由公式

(6)计算得E=0.5×(15.47 kg·m²)×[(18000 r/min)÷60×2×3.14)]2=27.3 MJ。由式(6)计算所得转子储能量27.3 MJ与实验计算推算转子储能量26.95 MJ误差约为1%,结果表明实验中所获得的数据以及对充电效率、发电效率的估计是准确可信的。4 结论高强合金钢是较大储能容量(5~100 kW·h)飞轮的经济性较好的材料,动能存储材料成本为1.5~2.4元/(W·h)。设计出了双盘整锻转子,储能50 kW·h。为研究与高速电机、磁悬浮相比的优势,采用了高旋转角速度的轴结构设计方案,为验证高强度钢的实用性及高速电机、磁悬浮的优势,采用了高旋转角速度的轴结构设计方案,研制出了400 kW、25 MJ、18000 r/min全磁悬浮飞轮储能工程样机,实现了9000~18000~9000充放电测试运转。第一作者:戴兴建(1970—),男,研究员,研究方向为飞轮储能,E-mail:daixingjian@iet.cn第一作者:朱阳历,高级工程师,研究方向为飞轮储能、压缩空气储能,E-mail:zhuyangli@iet.cn。相关文章【储能科学与技术专刊文章】磁轴承过临界同步阻尼技术研究【储能科学与技术专刊文章】磁轴承电感传感器无功补偿技术【储能科学与技术专刊文章】接触参数对储能飞轮转子碰摩行为的影响

邮发代号:80-732联系热线:010-64519601/9602/9643投稿网址:http://www.energystorage-journal.com

(0)

相关推荐

  • 典型汽车零件如何选材?

    上海金相质量检测中心 在汽车制造过程中,从设计新产品.改款旧产品,到维修.更换零件,都会涉及零件的选材.热处理工艺的确定和热处理工序安排等问题.这对提高产品质量和生产率,降低成本有着重要的意义. 汽车 ...

  • 内侧间室膝关节骨关节炎的形态学构成分析

    作者:鲁洋.邢欣.吕骥.郑占乐.吕红芝.张英泽 来源:中华创伤骨科杂志, 2019,21(5) 摘要 目的 从形态学上评估内侧间室膝关节骨关节炎的构成因素及其相互关系. 方法 回顾性分析2017年1月 ...

  • ANSYS Workbench 2D分析(三)

    前面简单的了解了平面应力和对称的基本知识,这里接着学习平面分析中的平面应变问题,由于模型简单,就自己建立吧. 实体模型分析 DM建模 首先在DM中建立一个空心圆柱,长度100mm,内直径18mm,外直 ...

  • 认识网格 | 选择合适的网格密度—圆角

    认识网格 | 选择合适的网格密度—圆角

  • 滑动轴承振动原因,机理全解!

    滑动轴承就是通常说的平面轴承,其形式简单,接触面积大,如果润滑保持良好,抗磨性能会很好,轴承寿命也会很长. 滑动轴承的承载能力大,回转精度高,润滑膜具有抗冲击作用,因此在工程上获得广泛的应用. 本文分 ...

  • 【二维码视频】汽车发动机曲轴飞轮组的检修

    曲轴飞轮组的常见检测项目包括曲轴裂纹的检测. 曲轴径向间隙的检测. 曲轴轴向间隙的检测. 曲轴弯曲量的检测. 曲轴轴颈磨损量的检测. 飞轮工作表面及其环齿的检测等. 检测曲轴的裂纹 曲轴经清洗后, 首 ...

  • 练习25:同轴接触分析

    本案例两个同心轴之间的接触分析,主要介绍面光顺选项,接触分析经常用到. 问题描述 里面的轴往上推,考察其接触应力:同心轴装配结构如下图所示. 材料信息 Steel:杨氏模量:200GPa:泊松比:0. ...

  • 【船机帮】船舶柴油机曲轴臂距差影响因素及策略

    船机故障心莫慌,遇事不决船机帮 怎样设置标星? 向左划 ☚ 因微信改版打乱发布时间,老铁们可能会错过文章更新. 将公众号设置标星,可快速找到我们...... 快看看如何操作吧! 第一步: 打开公众号列 ...

  • 【储能科学与技术·物理储能十年专刊】耦合液化天然气的液化空气储能系统热力学分析

    作者:何子睿1(), 齐伟1, 宋锦涛2, 崔双双2, 李红2()单位:1.鲁能集团有限公司:2.华北电力大学能源动力与机械工程学院.引用:何子睿,齐伟,宋锦涛等.耦合液化天然气的液化空气储能系统热力 ...

  • 会议 | 米开罗那受邀参加第七届全国储能科学与技术大会

    会议时间:2020年12月11-13日 会议地点:山东理工大学 会议主题:储能促进新能源产业可持续发展 会议内容: 当前储能的商业化发展虽然面临技术发展.商业模式创新.市场机制变革等一系列挑战,但基础 ...

  • 黄芪的科学栽培技术

    黄芪的科学栽培技术 黄芪,又名黄耆,为原植物和中药材的统称.主产于内蒙古.山西.甘肃.山东等地,为国家三级保护植物.中药材黄芪为豆科草本植物蒙古黄芪.膜荚黄芪的根,具有补气固表.利水退肿.托毒排脓.生 ...

  • 2022教育学考研 | 浙江师范大学933科学与技术教育技术考试情况分析(含真题)

    浙江师范大学 933科学与技术教育 1. 院校介绍 浙江师范大学于1979年经教育部批准与杭州大学联合招收和培养硕士研究生.1993年被国务院学位委员会批准为硕士学位授予单位,2013年被批准为博士学 ...

  • 2022教育学考研 | 陕西师范大学915科学与技术教育考试情况分析(含真题)

    陕西师范大学 915科学与技术教育 1. 院校介绍 陕西师范大学是教育部直属.世界一流学科建设高校,是国家培养高等院校.中等学校师资和教育管理干部以及其他高级专门人才的重要基地,被誉为"教师 ...

  • 院士论坛▏汪品先:海洋科学和技术协同发展的回顾

    一.引言 我国发展海洋事业的一大障碍,在于科学和技术的相互分割.研究科学的追随国外的命题,用国外买来的仪器获取数据写成论文,希望能够在国外刊物上发表:研究技术的模仿国外的产品,采用国内材料加上国外部件 ...

  • 面向储能充氢技术的直流微电网技术

    直流微电网是由直流供配电构成的微电网,由于光伏.风电.燃料电池和电池储能单元等产生的电能大部分为直流电,所以采用直流微电网,可以更高效可靠地接纳风.光等可再生能源发电系统.储能单元.电动汽车及其他直流 ...

  • 清华张钹院士专刊文章:迈向第三代人工智能(全文收录)

    机器之心转载 来源:清华大学人工智能研究院 作者:张钹.朱军.苏航 在这篇评述文章中,清华大学人工智能研究院院长.中国科学院院士张钹教授阐述了自己对于「第三代人工智能」的看法.他认为,第三代 AI 发 ...

  • 技术贴:高强钢轻量化厢式车箱开发

    技术贴:高强钢轻量化厢式车箱开发