PyTorch语义分割开源库semseg


今天跟大家介绍一款新出的基于PyTorch的语义分割开源库semseg:

https://github.com/hszhao/semseg

其开发者为香港中文大学的博士生Hengshuang Zhao。

https://hszhao.github.io/

介绍

semseg用PyTorch实现的语义分割/场景解析开源库。 它可以方便帮助开发者用于各种语义分割数据集的训练和测试。

该库主要使用ResNet50 / 101/152作为主干网,也可以很容易地改成其他分类网络结构。

目前已经实现了包括PSPNet和PSANet在内的网络,其在2016年ImageNet场景解析挑战赛@ ECCV16,LSUN语义分割挑战赛2017 @ CVPR17和WAD可驾驶区域分割挑战赛2018 @ CVPR18中排名第一。 示例实验数据集包括主流的ADE20K,PASCAL VOC 2012和Cityscapes。

ps. 该库开发者即PSPNet和PSANet算法的一作。

亮点

1. 同时支持多线程训练与多进程训练,并且后者非常快(该库比较重视训练)。

2. 重新实现的算法取得更好的结果,而且代码结构清晰(说明代码质量高)。

3. 所有初始化模型、训练得到的模型和预测的结果都能够下载(https://drive.google.com/open?id=15wx9vOM0euyizq-M1uINgN0_wjVRf9J3),方便开发者直接使用或者研究比较。

作者推荐的软硬件环境:

(要4到8块显卡,看来没有多卡,语义分割是玩不起了~)

训练简单

该库的训练非常简单,简单配置后只需要一条命令

sh tool/train.sh ade20k pspnet50

测试简单

简单配置数据集和模型路径后,也只需要一条命令:

sh tool/test.sh ade20k pspnet50

在单幅图像上测试也很简单,示例:

PYTHONPATH=./ python tool/demo.py --config=config/ade20k/ade20k_pspnet50.yaml --image=figure/demo/ADE_val_00001515.jpg TEST.scales '[1.0]'

Performance

在三个数据集上的结果如下:

注意,作者列出的时间是在8个GeForce RTX 2080 Ti上训练得到的。

感谢作者的分享~

再发一遍地址:

https://github.com/hszhao/semseg

图像分割专业交流群

(0)

相关推荐