金属3D打印技术的应用及其对原料粉体的要求

与传统的“去除型”制造方式相比,3D打印工艺几乎不会造成金属材料浪费,而且这种“增材制造直接成形的特点使得产品在生产过程中的设备问题大大减少。下文将为大家介绍3D打印技术的发展概况,3D打印技术对原料粉体的性能要求以及不同金属粉末的适用范围。

增材制造

一、金属3D打印技术发展概况

工作原理:首先在计算机中用CAD造型软件等绘出三维模型并导出STL文件,然后用分层切片软件将模型横向切成若干层,在高能激光束或电子束的作用下逐层熔化金属粉末,最后得到三维实体。

根据在加工过程中金属粉末材料的输送方式的不同,金属3D打印技术可以分为3类:激光选区熔化技术、电子束选区熔化技术、激光近净成形。

1、激光选区熔化(SLM

其技术原理是采用激光束照射预先铺展好的金属粉末原料,可适用于单一的金属粉末、奥氏体不锈钢、镍基合金、钛基合金等原料。

2、电子束选区熔化(EBSM

其技术原理是采用电子束照射预先铺展好的金属粉末原料,可适用于不锈钢、钛及钛合金、Co-Cr-Mo合金等。

3激光近净成型(LENS

其技术原理是在用激光按照预设轨迹熔化同步供给的金属粉末,可适用于奥氏体不锈钢、Ni、Ti、Cu、Ni-Cu-sn、Fe基(Fe-B-Cr-C-Mn-Mo-W-Zr)等原料。

3D打印优势:3D打印技术非常适合于小批量定做及复杂零件、大型化制品的定做,成本优势不算太大,但开发时间却可以大大缩短,设计师也可以脑洞大开,设计出一些更为特别模具无法完成的制品。可以有效的解决小批量、复杂零件、大型制品制作模具成本高开发验证,周期长的问题。

示例:3D打印钴铬合金航空发动机叶轮

将金属3D打印技术应用到航天零件的开发,可以大大缩短设计到验证的周期

二、金属3D打印对粉体品质的要求

金属粉体材料是金属3D打印工艺的原材料,其粉体的基本性能对最终的成型的制品品质有着很大的关系。金属3D打印对于粉体的要求主要在于化学成分、颗粒形状、粒度及粒度分布、流动性、循环使用性等这几个方面,具体要求见下文解析。

1、化学成分

原料的化学主要成分包括金属元素和杂质成分,主要金属元素常用的有Fe、Ti、Ni、Al、Cu、Co、Cr以及贵金属Ag、Au等。杂质成分有还原铁中的Si、Mn、C、S、P、O等,从原料和粉末生产中中混入的其他杂质等,粉体表面吸附的水及其他气体等。

在成型过程过程,杂质可能会与基体发生反应,改变基体性质,给制件品质带来负面的影响。夹杂物的存在也会使粉体熔化不均,易造成制件的内部缺陷。粉体含氧量较高时,金属粉体不仅易氧化,形成氧化膜,还会导致球化现象,影响制件的致密度及品质。

因此,需要严格控制原料粉体的杂质及夹杂以保证制品的品质,所以,3D打印用金属粉体需要采用纯度较高的金属粉体原料。

2、颗粒形状、粉体粒度及粒度分布

a、形状要求常见的颗粒的形状有球形、近球形、片状、针状及其他不规则形状等。不规则的颗粒具有更大的表面积,有利于增加烧结驱动。但球形度高的粉体颗粒流动性好,送粉铺粉均匀,有利于提升制件的致密度及均匀度。因此,3D打印用粉体颗粒一般要求是球形或者近球形。

b、粉体粒度及粒度分布。研究表明,粉体是通过直接吸收激光或电子束扫描时的能量而熔化烧结,粒子小则表面积大,直接吸收能量多,更易升温,越有利于烧结。此外,粉体粒度小,粒子之间间隙小,松装密度高,成形后零件致密度高,因此有利于提高产品的强度和表面质量。但粉体粒度过小时,粉体易发生粘附团聚,导致粉体流动性下降,影响粉料运输及铺粉均匀。

所以细粉、粗粉应该以一定配比混合,选择恰当的粒度与粒度分布以达到预期的成形效果。

3、粉体的工艺性能要求

粉体的工艺性能主要包括松装密度、振实密度、流动性和循环利用性能。

a、松装密度是粉末自然堆积时的密度,振实密度是经过振动后的密度。球形度好、粒度分布宽的粉末松装密度高,孔隙率低,成形后的零件致密度高成形质量好。

b、流动性粉体的流动性直接影响铺粉的均匀性或送粉的稳定性。粉末流动性太差,易造成粉层厚度不均,扫描区域内的金属熔化量不均,导致制件内部结构不均,影响成形质量;而高流动性的粉末易于流化,沉积均匀,粉末利用率高,有利于提高3D打印成形件的尺寸精度和表面均匀致密化。

c、循环性能。3D打印过程结束后,留在粉床中未熔化的粉末通过筛分回收仍然可以继续使用。但长时间的高温环境下,粉床中的粉末会有一定的性能变化。需要搭配具体工艺选用回收率。

三、3D打印用金属粉末的种类及应用领域

单一组分的金属粉末在成形过程中出现明显的球化和集聚现象,易造成烧结变形和密度疏松,因此,多组元金属粉末或者预合金粉末被开发了出来。按基体的主要元素可为铁基材料、镍基合金、钛与钛合金、钴铬合金、铝合金、铜合金以及贵金属等

1、铁基材料。3D打印中应用最广泛的金属材料,力学性能优异,耐高温和耐腐蚀,性价比高,适合打印尺寸较大的产品,多用于各种工程机械、零件及模具等。市面典型的材料有304和316奥氏体不锈钢粉。

2、镍基材料。这类材料具有良好的高温性能,抗氧化和抗腐蚀性。在航空航天、船舶以及石油化工等领域应用较广。

3、钛及钛合金。其突出特点是比强度高,抗腐蚀,生物相容性好。因此在航天航空、生物骨骼,牙齿种植方面有着广泛应用。

3d打印钛合人工骨头

4、钴铬合金。主要分为CoCrW和CoCrMo合金两大类,具有良好的高温性能及抗腐蚀性能。常应用于在牙科修复体如牙冠固定桥、可摘除义齿等的个性化定制方面。

3d打印钴铬合金牙齿托

5、铝合金。铝合金是一种轻量化金属,其熔点低、密度低,但机械强度稍弱,化学活性强,目前已有研究可以通过3d打印制备出高强度的铝合金材料。我想对于重视轻量化的的航空器和汽车零部件来说是非常有意义的。

6、铜及铜合金。铜最大的优势在于其优异的导电性及导热性。可用于航空航天、电子、机械零部件加工。

7、贵金属。黄金和白银等具有良好的塑性和延展性,光泽度十分美观,可以通过3D打印加工个性化饰品,实现高精度高难度艺术品的设计和制作。

个性黄金饰品

参考文献:

印技术及其专用粉末特征与应用;华南理工大学国家金属材料近净成形工程技术研究中心,程玉婉,关航健,肖志瑜;广州纳联材料科技有限公司,李博;

(0)

相关推荐