正态分布的小知识

神说,要有正态分布,就有了正态分布。
神看正态分布是好的,就让随机误差服从了正态分布。

正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

基本概念

正态分布(Normal distribution)是一种概率分布。正态分布是具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ²是此随机变量的方差,所以正态分布记作N(μ,σ² )。遵从正态分布的随机变量的概率规律为取μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。

正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ²=1时,称为标准正态分布,记为N(0,1)。

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

主要特点

1.  估计频数分布

一个服从正态分布的变量只要知道其均数与标准差,就可根据公式即可估计任意取值范围内频数比例。

2.  制定参考值范围

(1) 正态分布法适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。

(2) 百分位数法常用于偏态分布的指标。

3.  许多统计方法的理论基础

检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。

理论基础

如t分布、F分布都是在正态分布的基础上推导出来的,u检验也是以正态分布为基础的。此外,t分布、二项分布、Poisson分布的极限为正态分布,在一定条件下,可以按正态分布原理来处理。

正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。

主要内涵

在联系自然、社会和思维的实践背景下,我们以正态分布的本质为基础,以正态分布曲线及面积分布图为表征,进行抽象与提升,抓住其中的主要哲学内涵,归纳正态分布论(正态哲学)的主要内涵如下:

整体论

正态分布启示我们,要用整体的观点来看事物。“系统的整体观念或总体观念是系统概念的精髓。” 正态分布曲线及面积分布图由基区、负区、正区三个区组成,各区比重不一样。用整体来看事物才能看清楚事物的本来面貌,才能得出事物的根本特性。不能只见树木不见森林,也不能以偏概全。此外整体大于部分之和,在分析各部分、各层次的基础上,还要从整体看事物,这是因为整体有不同于各部分的特点。用整体观来看世界,就是要立足在基区,放眼负区和正区。要看到主要方面,还要看到次要方面,既要看到积极的方面还要看到事物消极的一面,看到事物前进的一面还要看到落后的一面。片面看事物必然看到的是偏态或者是变态的事物,不是真实的事物本身。

重点论

正态分布曲线及面积分布图非常清晰的展示了重点,那就是基区占68.27%,是主体,要重点抓,此外95%,99%则展示了正态的全面性。认识世界和改造世界一定要住住重点,因为重点就是事物的主要矛盾,它对事物的发展起主要的、支配性的作用。抓住了重点才能一举其纲,万目皆张。事物和现象纷繁复杂,在千头万绪中不抓住主要矛盾,就会陷入无限琐碎之中。由于我们时间和精力的相对有限性,出于效率的追求,我们更应该抓住重点。在正态分布中,基区占了主体和重点。如果我们结合20/80法则,我们更可以大胆的把正区也可以看做是重点。

发展论

联系和发展是事物发展变化的基本规律。任何事物都有其产生、发展和灭亡的历史,如果我们把正态分布看做是任何一个系统或者事物的发展过程的话,我们明显的看到这个过程经历着从负区到基区再到正区的过程。无论是自然、社会还是人类的思维都明显的遵循这样一个过程。准确的把握事物或者事件所处的历史过程和阶段极大的有助于掌握我们对事物、事件的特征和性质,是我们分析问题,采取对策和解决问题的重要基础和依据。发展的阶段不同,性质和特征也不同,分析和解决问题的办法要与此相适应,这就是具体问题具体分析,也是解放思想、实事求是、与时俱进的精髓。正态发展的特点还启示我们,事物发展大都是渐进的和累积的,走渐进发展的道路是事物发展的常态。例如,遗传是常态,变异是非常态。

总之,正态分布论是科学的世界观,也是科学的方法论,是我们认识和改造世界的最重要和最根本的工具之一,对我们的理论和实践有重要的指导意义。以正态哲学认识世界,能更好的认识和把握世界的本质和规律,以正态哲学来改造世界,能更好的在尊重和利用客观规律,更有效的改造世界。

教育统计学统计规律表明,学生的智力水平,包括学习能力,实际动手能力等呈正态分布。因而正常的考试成绩分布应基本服从正态分布。考试分析要求绘制出学生成绩分布的直方图,以“中间高、两头低”来衡量成绩符合正态分布的程度。其评价标准认为:考生成绩分布情况直方图,基本呈正态曲线状,属于好,如果略呈正(负)态状,属于中等,如果呈严重偏态或无规律,就是差的。

生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。从概率统计规律看,“正常的考试成绩分布应基本服从正态分布”是正确的。但是必须考虑人与物的本质不同,以及教育的有所作为可以使“随机”受到干预,用曲线或直方图的形状来评价考试成绩就有失偏颇。现在许多教育专家(如上海顾泠沅 、美国布鲁姆等)已经通过实践论证,教育是可以大有作为的,可以做到大多数学生及格,而且多数学生可以得高分,考试成绩曲线是偏正态分布的。但是长期受到“中间高、两头低”标准的影响,限制了教师的作为,抑制了多数学生能够学好的信心。这是很大的误会。

通常正态曲线有一条对称轴。当某个分数(或分数段)的考生人数最多时,对应曲线的最高点,是曲线的顶点。该分数值在横轴上的对应点与顶点连接的线段就是该正态曲线的对称轴。考生人数最多的值是峰值。我们注意到,成绩曲线或直方图实际上很少对称的,称之为峰线更合适。

基本术语

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。

⒈正态分布:若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号N(μ,σ² )。其中μ、σ² 是两个不确定常数,是正态分布的参数,不同的μ、不同的σ^2对应不同的正态分布。  

正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。

2.正态分布的特征:服从正态分布的变量的频数分布由μ、σ完全决定。

集中性:正态曲线的高峰位于正中央,即均数所在的位置。对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ²):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。

u变换:为了便于描述和应用,常将正态变量作数据转换。μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。

σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

标准正态曲线

标准正态曲线N(0,1)是一种特殊的正态分布曲线,以及标准正态总体在任一区间(a,b)内取值概率。

“小概率时间”和假设检验的基本思想:“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。

面积分布

1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同范围内正态曲线下的面积可用公式计算。

⒉几个重要的面积比例轴与正态曲线之间的面积恒等于1。正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.27%,横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.00%,横轴区间(μ-2σ,μ+2σ)内的面积为95.44%,横轴区间[0,μ+2σ)内的面积为97.72%,横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.00%,横轴区间(μ-3σ,μ+3σ)内的面积为99.73%。

标准正态曲线

1.标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ²为0和1,通常用ξ(或Z)表示服从标准正态分布的变量,记为 Z~N(0,1)。

2.标准化变换:此变换有特性:若原分布服从正态分布 ,则Z=(x-μ)/σ ~ N(0,1) 就服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。 

⒊ 标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。

如果有人问我数理统计领域哪个公式最能让人感觉到上帝的存在,那我一定投正态分布的票。因为这个分布戴着神秘的面纱,在自然界中无处不在,让你在纷繁芜杂的数据背后看到隐隐的秩序。

正态分布在科学领域,冠名权那是一个很高的荣誉。早年去过德国的人还会发现,德国的钢镚和10马克的纸币上都留有高斯的头像和正态密度曲线。正态分布被冠名高斯分布,我们也容易认为是高斯发现了正态分布,其实不然,不过高斯对于正态分布的历史地位的确立是起到了决定性的作用。

正态曲线虽然看上去很美,却不是一拍脑袋就能想到的。我们在本科学习数理统计的时候,课本一上来介绍正态分布就给出密度分布函数,却从来不说明这个分布函数是通过什么原理推导出来的。所以有人一直搞不明白数学家当年是怎么找到这个概率分布曲线的,又是怎么发现随机误差服从这个奇妙的分布的。我们在实践中大量的使用正态分布,却对这个分布的来龙去脉知之甚少,正态分布真是让人感觉既熟悉又陌生。直到陈希孺院士的《数理统计学简史》这本书,看了之后便可了解正态分布曲线从发现到被人们重视进而广泛应用,也是经过了几百年的历史。

·  ·  ·   图 书 推 荐   ·  ·  ·

《数理统计简史》

作者 :陈希孺
本书论述了自17世纪迄今数理统计学发展的简要历史。内容包括:概率基本概念的起源和发展,伯努利大数定律和狄莫旨二项概率正态逼近,贝叶斯关于统计推断的思想,最小二乘法与误差分布以及正态分布的发现过程,社会统计学家对数理统计方法的主要贡献等。
(0)

相关推荐

  • ​【文末有福利】连续型随机变量及实例详解

    如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任意点,那么称之为连续型随机变量.例如,一批电子元件的寿命.实际中常遇到的测量误差等都是连续型随机变量. >>> ...

  • Z分布与t分布

    作者:Ling   审稿:石鹏  封面:吉江 Z分布 基本介绍 Z分布,又称作标准正态分布,是正态分布中的一种.那什么是正态分布呢? 正态分布 也叫常态分布,是连续随机变量概率分布的一种,自然界.人类 ...

  • 概率统计专题47:大势所趋 - 正态分布

    概率统计专题47:大势所趋 - 正态分布 ( 全国I卷理)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生 ...

  • 116思维模型:正态分布一核心的概率分布

    互联网时代每天产生的数据正在以指数级增长,如何看透数据背后隐藏的秘密和规律,统计学概率论应运而生,很快成为科学的基础工具,渗透到了整个自然科学和社会科学领域. 概率论是研究随机现象数量规律的数学分支, ...

  • 帕金森健康小知识

    对于帕金森患者来说,能够找到一家正规的治疗帕金森这种疾病的医院对自身的病情起到非常好的帮助作用,所以,帕金森患者需要擦亮眼睛去选择治疗帕金森的医院,但是在选择医院之前,患者应该对自己的病情有一定的了解 ...

  • 中医小知识:认识十四经络

    中医之声 医学资讯 公众号 十四经络由十二经络和任脉.督脉构成,在内部隶属于脏腑,在外部分布于四肢.头面.躯干,分为手足.阴阳.脏腑三部分. 具有的疏通作用如下: 1.遍布内外,网络全身. 2.相互联 ...

  • 【养宠小知识】银渐层的眼角黑黑的咋治好

    银渐层的眼角黑黑的,就说明可能是出现了泪痕的现象,宠物主人不要掉以轻心,虽然出现泪痕对猫咪的身体健康来说,并没有什么影响,但是对于它的颜值来说,影响是非常严重的,宠物主人可以参考以下几点措施,帮助猫咪 ...

  • 【养宠小知识】公猫尿血是怎么回事怎么治疗

    引起公猫尿血的原因有很多种,宠物主人要根据自家猫咪的具体情况进行分析,才能给予猫咪对症的治疗,帮助它尽快恢复健康.例如可以参考以下几点可能的原因进行判断. 1.饮食问题 猫咪尿血,有可能是平时的饮食问 ...

  • 你要了解的栀子花日常养护小知识

    栀子应每年4月-5月换盆,盆土可用矾肥水残渣.砂土.细炉渣灰.腐叶土混合而成.生长适宜温度是20℃-28℃,春末至秋初,天气炎热,注意遮阳.防高温.防阳光直射和空气不流通,否则叶片变黄. 1.栀子性喜 ...

  • 每天涨点小知识 为什么汽车仪表盘的上限值要标那么高?

    在汽车上有个怪现象,明明自己的车根本跑不了那么快,但为什么仪表盘的上线车速被标的那么高?甚至有些搭载小排量自吸引擎的普通家用车,底表竟然被标到了280公里. 当然,汽车的最高设计时速标准其实远超国内车 ...

  • 【小知识/时尚辞典】有糖尿病吗

    <有糖尿病吗> 这个词,出自网上一个帖子. 楼主说自己30岁,一直单身不知原因. 结果,看到他跟女孩的聊天记录,发现了真相. 楼主打算请女孩喝奶茶,女孩表示自己在戒糖,结果楼主回复说:&q ...

  • 古董日用品小知识——鹅毛笔 Quill

    好早就想八一八这个鹅毛笔,今天就来了 ! 话说现在的人很难想像钢笔发明之前,有好几个世纪的西方人都用这种笔来写字......不能像咱们老祖宗那样发明下毛笔这样好玩的工具吗? 毕竟,拔一根鹅毛,削尖了就 ...

  • 科普关于维生素的小知识,日常可以根据自身的需要选择

    科普关于维生素的小知识,日常可以根据自身的需要选择