【研究模型】事件研究法

事件研究方法最早是被应用在金融领域,由Dolly在1933年提出,后经过Ball、Brown以及Fama等研究才最终成熟。该方法本质是一种针对某项经济事件对资产价格造成影响的程度和持续时间进行度量以及检验的统计学方法,或者使用金融市场数据来评估特定事件对公司价值的影响。事件研究方法的理论框架主要是基于由尤金·法玛(1965)提出并深化的有效市场假说,即在有效的资本市场中,投资者是理性的,所有与价格相关的新信息都会立即包含在资产价格中。因此,事件研究方法是衡量一个经济事件对企业影响的有效工具。
事件研究法通常被用于评估并购绩效,许多国外学者通过采用不同的样本和测量间隔,对目标公司和收购公司股东的异常回报进行了大量的实证分析。不少国内学者也采用事件研究方法对中国企业的并购绩效表现进行了实证分析。采用事件研究方法衡量某个经济事件对公司价值影响及影响程度时,通常有两个基本假设条件

(1)在事件研究窗口内,只有所研究的事件,没有其他事件,即使有也不会对价格产生显著影响;

(2)事件影响可以由异常回报率来度量。

所以该方法的关键在于计算异常回报率和累积异常回报率。

事件研究通常包括以下几步:

(1)净化数据(提出无关和无法研究以及其他原因)和计算事件窗口

(2)估计正常表现

(3)计算异常表现和累积超额回报

(4)显著性检验

(5)全部事件交叉检验(相当于稳健性检验)

本篇旨在帮助你用stata来开展事件研究,并附上Stata的详细代码供参考。假设你已经拥有一个时间变量(date)和公司标识(company_id)。

  • 净化数据并计算事件窗口和估计窗口

你很可能获取了超出你需要的每个公司的观察值,也有可能有一些公司的观察值不充分。在你开展下一步前,你必须确保你的分析是建立在正确的观察值之上。为了实现这一点,你需要设立一个变量 dif ,它将会计算从观察(相当于估计期)到事件期的天数,这即有可能是节假日,也有可能是交易日。

就交易日天数:

sort company_id date

by company_id: gen datenum=_n

by company_id: gen target=datenum if date==event_date

egen td=min(target), by(company_id)

drop target

gen dif=datenum-td

就节假日:

gen dif=date-event_date

由上可以看出,计算交易日天数比计算节假日天数稍微复杂一点。对于交易日,我们首先需要设立一个变量,这个变量是用来计算每一个公司标识范围内的天数,然后我们再确定哪些观测值发生在事件期内。

我们设立一个和事件天数有关的变量。这个事件天数建立在company_id范围内的所有观察值的基础上。最后,我们选取二者之间的差异来设立一个变量dif,以计算每一个个体观测值和事件期之间的天数。下一步,我们需要确定我们事件期前后的最小观察期天数以及事件窗口之前的估计窗口的最小观察期天数。比如我们想要一个事件期前后两天的窗口(总共5天的事件期)以及一个30天的估计窗口(你可以改变这些数字以适应你的分析)。

by company_id: gen event_window=1 if dif>=-2 & dif<=2

egen count_event_obs=count(event_window), by(company_id)

by company_id: gen estimation_window=1 if dif<-30 & dif>=-60

egen count_est_obs=count(estimation_window), by(company_id)

replace event_window=0 if event_window==.

replace estimation_window=0 if estimation_window==.

确定事件窗口和估计窗口的程序是相同的。首先,我们设立一个变量,当观测值在特定的日期内等于1;其次,我们设立另一个变量来计算,在每一个公司标识范围内,有多少观测值的变量值等于1;最后,我们用0代替所有的缺省值,设立一个哑变量。此时,你就可以确定哪个公司没有充分的观测值。

tab company_id if count_event_obs<5

tab company_id if count_est_obs<30

Tab命令将会产生一个公司标识符的列表,这个列表中包含的就是没有足够的事件窗口及估计窗口观察值窗口的公司,同时还会报告这些公司的总的观测值的数量,为了排除这些公司使用如下命令:

drop if count_event_obs < 5

drop if count_est_obs < 30

你必须确保在删除任何观察值之前,样本已经用另一个名字保存。

此时,你也可以剔除一些你不需要的变量。

  • 估计正常表现

首先,我们需要一种途径和方法来估计正常表现。为了实现这一点,我们将会利用估计窗口中的数据来对每个公司进行单变量回归,并保存(常数项)和(解释变量的系数),随后我们会使用这个保存的回归系数来预测事件窗口的正常表现。

就回报这个回归中的被解释变量来讲,它仅仅是针对既定股票回报的CRSR变量,而我们用来预测ret的解释变量,使一个对于任何股票的指数加权回报。对你的样本集使用等价变量。

set more off /* this command just keeps stata from pausing after each screen of output */

gen predicted_return=.

egen id=group(company_id)

/* for multiple event dates, use: egen id = group(group_id) */

forvalues i=1(1)N { /*note: replace N with the highest value of id */

l id company_id if id==`i' & dif==0

reg ret market_return if id==`i' & estimation_window==1

predict p if id==`i'

replace predicted_return = p if id==`i' & event_window==1

drop p}

这里我们设立了一个变量id,以计算公司数量(从1到实际数)。N代表的是包含完整数据的公司——事件联合体数目(即事件有关的有完整数据的公司的数目)。这个过程通过在公司间重复,并对每一个公司在估计窗口开展回归,然后用回归结果来预测事件窗口的正常回报。

  • 异常表现和累积超额回报

现在我们可以用我们的数据计算异常表现和累积超额回报。日异常回报等于事件窗口中的每天的实际回报减预期回报。整个事件窗口的超额回报的总额就是累积超额回报。

sort id date

gen abnormal_return=ret-predicted_return if event_window==1

by id: egen cumulative_abnormal_return = sum(abnormal_return)

此处我们仅仅计算了事件窗口中每个样本观测值的超额回报,随后我们将CAR等于所有公司的超额回报之和。

  • 显著性检验

我们将计算一个检验统计量(t值)来确定每支股票平均的超额回报是否显著不等于0。AR即超额回报,AR_SD是超额回报的标准差。如果t统计量的绝对值大于1.96,那么平均的超额回报在5%的水平显著不等于0.1.96这个值来自于均值为0,标准差为1的标准正态分布,其中正态分布95%的部分分布在±1.96之间。

sort id date

by id: egen ar_sd = sd(abnormal_return)

gen test =(1/sqrt(number of days in event window)) * ( cumulative_abnormal_return /ar_sd)

list company_id cumulative_abnormal_return test if dif==0

Note: this test uses the sample standard deviation. A less conservative alternative is to use the population standard deviation. To derive this from the sample standard deviation produced by Stata, multiply ar_sd by the square root of n-1/n; in our example, by the square root of 4/5.

这会将你的事件研究的结果生成一项Excel文件。

outsheet  company_id event_date cumulative_abnormal_return test using stats.csv if dif==0, comma name

  • 全部事件交叉检验

除了观察每个公司的平均超额回报,你可能还想计算将所有公司视为一个整体的累积超额回报,代码如下:

reg cumulative_abnormal_return if dif==0, robust

从回归中得到的系数的P值可以告诉你,所有公司的累积超额回报的显著性。此时,P检验比T检验更可靠,因为它更允许你使用一个强的标准误差。

(0)

相关推荐

  • PSM与DID的结合是一段“孽缘”

    许久以来,很多朋友都希望我出一期有关双重差分倾向得分匹配方法(PSM-DID)的内容,但我一直迟迟没有动笔.事实上,我个人并不喜欢这一方法,也并不推荐大家使用这一方法,因为PSM-DID压根就不是什么 ...

  • Stata:一文读懂事件研究法Event Study

    Stata:一文读懂事件研究法Event Study

  • RStata 免费分享|2000~2014 年工企和海关匹配数据

    清洗工企数据库里面的企业名称.邮政编码和固定电话变量(等下要用这三个变量进行匹配): 清洗海关数据库里面的企业名称.邮编和电话变量: 在工企数据库里面生成一个 ID 变量用以在匹配过程中识别每个观测值 ...

  • 独立样本四格表卡方检验

    独立样本四格表卡方检验 目录 (一)假设 (二)基本计算 (1)期望值的计算 (2)卡方值的计算 (三)spss操作及结果 (1)数据 (2)spss操作 (3)结果 (一)假设 (1)分类互斥. ( ...

  • 变量(variable)

    ​变量(variable)是观测单位的某种特征或属性,变量的观测值就是所谓的变量值,有时也称数据或资料(data).更准确地讲,数据或资料是由具有若干变量值的观测单位所组成的.例如在调查中常规问及的问 ...

  • 如何使用雷达图进行竞争对手分析?

    雷达图是(也称为极坐标图或雷达图)可视化多变量数据,这些数据用于在从同一点开始的轴上表示的多个公共变量上绘制一组或多组值,每个轴代表该对象的不同分类值的数量. 雷达图是一个很好的工具,可以一次将许多备 ...

  • 数据挖掘任务类型

    引言 在大数据时代我们总有许许多的的数据要去挖掘分析. 问题描述 那么数据挖掘任务有哪些类型呢?我们该如何去判断进而去处理它呢? 方法 我们要认识到有以下四种类型: 1.预测建模(predictive ...

  • 变量、对象和值的关系

    变量就是一个符号,或者说是名字.类比现实生活,相当于是身份证.对象是一段存储空间,简单来说就是一块内存.类比现实生活就是某个具体的人.对象有很多属性,其中一个属性就是类型.相同类型的对象有很多一样的属 ...

  • 机器学习已经与政策评估方法, 例如事件研究法结合起来识别政策因果效应了!

    推荐用渐进(多期)DID和事件研究法开展政策评估的论文及其实现数据和代码! 计量经济圈公众号搜索功能及操作流程演示 正文 关于下方文字内容,作者:孙沁竹,复旦大学经济学院,通信邮箱:qzsun_fdu ...

  • 推荐用渐进(多期)DID和事件研究法开展政策评估的论文及其实现数据和代码!

    今天,分享一份使用渐进(多期)DID和事件研究法开展政策评估的论文及其实现数据和代码.这样,各位中青年学者就可以直接根据代码操作多期DID的实现过程,而对于在理解上存在困难的可以对照文中的解释予以理解 ...

  • 利用DID和事件研究法的Top5文章, 分析最低工资对低薪工作的影响!

    邮箱:econometrics666@126.com 所有计量经济圈方法论丛的do文件, 微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问. 关于相关计量方法视频课程,文章,数据和代码, ...

  • 《血疫》改编自真实事件“埃博拉病毒”,看完令人毛孔悚然

    今年上半年,新冠病毒让许多人陷入了恐慌,疫情还未结束,最近又传出了埃博拉病毒重来的消息.不得不说,2020真的很魔幻! 也许许多人还不知道埃博拉病毒到底有多恐怖?<血疫>这部片子就是像我们 ...

  • 这些根据真实事件改编的电影,你看过几部?

    电影源于生活,而生活有时候比电影更狗血. 今天小编就为大家盘点几部今年改编自真实事件的电影,如果说不是电影将这些故事呈现出来,也许我们很难想象,这是事情居然真实的在这个世界发生过. 1,孟买酒店 这部 ...

  • 小委托人|真实事件改编,7岁男孩被后妈虐打致死。

    小委托人|真实事件改编,7岁男孩被后妈虐打致死。

  • 孟买酒店|改编自印度“911”事件,每一秒都令人紧张到窒息。

    比恐怖片更恐怖的永远都是真实事件! 近年来,印度电影总是不断带给我们惊喜. 这一次,<孟买酒店>再次刷新了印度片的高度,整部片子没有载歌载舞没有欢笑,观影过程中,满是令人窒息的紧张感. 大 ...

  • 火工头陀事件后,少林派为什么不能靠七十二绝技迅速崛起?

    作者:萨沙 本文章为萨沙原创,谢绝任何媒体转载 萨沙一本正经的胡说八道第152期 火工头陀事件后,少林派为什么不能靠七十二绝技迅速崛起? 火工头陀事件,竟然使得少林寺,长达70多年一蹶不振. 当昆仑三 ...

  • 长沙中创教育事件:成人高考成绩查询时间

    成人高考简介 成人高等学校招生全国统一考试,简称成人高考,是我国成人高等学校选拔合格的毕业生以进入更高层次学历教育的入学考试,属于国民教育系列教育,已经列入国家招生计划. 成人高考报名时间 考试时间由 ...