汽车以太网会最终胜出吗?

编辑:Astroys
随着燃油车被电动车取代,机械连接越来越多地被电子信息所取代,需要一个车载网络来促进通信。针对汽车和其他时间敏感的应用而出现的以太网似乎是首选。
但这一选择是否已成定局?以太网会取代所有其他的车载网络吗?至少到目前为止,还不清楚。
Synopsys的高级市场经理Joe Mallett说:“现在对汽车以太网是否真的会成为首选的总线仍有争议。它减少了线束,无论何时减少线束都是好事。但服务质量一直是个挑战。”
整体汽车架构会强烈影响网络的走向。Zonal架构倾向于强大的骨干网络,以太网似乎在这方面有优势。但最终的选择还未定,即使以太网成为首选的主干网,连接到传感器和显示器的各种本地节点仍是一个问题。
汽车工程师协会(SAE)已经定义了A到D四个级别的网络。Rambus的安全技术产品经理Thierry Kouthon说:“A只有很少的信息,比如开/关。B介于每秒几百kb的速度。C会更快。而D超过1Mbps。在2000年之前的传统汽车中,这基本上已经足够了。”
虽然最快的网络级别是1Mbps以上,但以今天的标准来看非常慢,新的数据要求比这快3或4个数量级的网络。

始于信息娱乐系统

车载网络的大部分工作最初是由信息娱乐的需求驱动的。这意味着通过网络与内容源的外部连接,至少可以处理音频和视频的需求。
虽然许多系统都有普通以太网,但它不能处理音频/视频(A/V)的时间敏感需求,因为时间不是确定的。Kouthon解释说:“它有一个可怕的避免冲突的检测机制。”这就是为以太网开发时间敏感型网络(TSN)功能的动机。
Avnu联盟主席、英特尔的技术营销战略家Greg Schlechter说:“TSN始于AVB(A/V bridging)。然后,在汽车领域,他们说,'我们需要在将A/V用到车上’。因此,我们进行了改进。而现在工业界也开始接受它,航空业也在关注它。”
TSN指的是可以为不同的应用所选择的一组功能。顾名思义,它涉及到在交付时间保证下交付时间敏感的流量的能力。这是基础以太网无法做到的,因为它是一个尽力而为的协议。
TSN功能包括流量整形、带宽预留、减少延迟、抢占和处理实时要求。这些都是针对车辆内不同功能的整体服务质量需求。
但是,如果以太网在信息娱乐系统中可以发挥作用,就出现了一种观点,认为它也可能被用于车内其它网络。包括其他对时间敏感的控制功能,普通的以太网可能无法处理,但带有TSN的以太网可以处理。
Synopsys的高级产品营销经理John Swanson说:“当你踩下刹车时,在车辆完全停止之前还有一段时间。你不希望你孩子在玩的游戏干扰到网络。异步流量整形器让你更加灵活。如果你有足够的余量和带宽,TSN可以让你保证所有的东西都能实现,而无需所有详细的网络工程。”
TSN以太网的汽车配置文件已经建立,但问题仍然是这是否是整个车辆的最佳解决方案。
架构影响网络
如果以太网要在汽车中占主导地位,它需要被用于安全关键的应用。这与信息娱乐系统有很大不同,而且要复杂得多。在最高层面上,有两种竞争性的架构,而每种架构的支持者都倾向于沿着商业产品线进行调整。
Swanson说:“人们现在正在两个方向进行试验。有超级计算构架,也有zonal计算构架。”
大型计算引擎的制造商们倾向于集中式计算,在这里可以利用高端处理器的能力,将他们锁定在这个巨大的机会中。这意味着将所有数据带入一个中心位置进行处理。
相比之下,zonal架构将计算分布在各zone和一个中央枢纽之间。一个zone指的是汽车的一个位置区域。例如,车辆的左前部分可以是一个zone。一个zone可能有各种功能,本地计算尽可能地处理这些功能。一个骨干网络将连接各zone和中央处理器。
图1:两种主要的汽车网络选择。左边是集中式模式,所有网络端点都连接到中央处理器。右边是zonal架构,在将结果传递给中央处理器之前,由本地zone处理部分处理工作。Zone内的网络仍然是一个开放的问题。
英飞凌产品营销总监Vikram Patel说:“如果他们走zonal架构的道路,中间有高算力中央计算平台,那么千兆速度的以太网主干网可能是他们都在寻找的答案。”
这与domain构架不同,在domain构架中物理位置不再是决定因素。相反,相似的功能构成了一个domain。按domain来组织可能意味着中央计算,因为汽车中任何地方的所有共享功能都会被一起处理。
中央计算的一个好处是,它可以看到整个车辆,而一个zone只能看到该zone内的东西。因此,zonal架构意味着在zone内的本地计算和中央计算之间的分离,然后进一步集中计算将各zone结合起来。例如,一个摄像头的处理可以在本地进行,然后将其结果被发送到中央枢纽,在那里所有摄像头的结果可以被适当地合并起来。
西门子EDA自动驾驶和ADAS高级总监David Fritz说:“zonal架构成功的关键是一些新的桥梁。你可以从zone内的本地CAN网络到zone模块。然后再进入主网络,即汽车以太网。”
Zonal架构的关键动力之一是可以减少线束。线束被证明是车辆中最重和最昂贵的部件,因此行业正采取一切可能的方法来减少或简化连接。
如果使用星形网络配置,中央计算意味着从所有传感器到中央枢纽的“全垒打”。在zonal架构下,这些连接大部分都在zone内,只有一个连接从整个zone到中心。
Swanson说:“我相信我们将看到一种混合模式,在这种架构中,一台超级计算机知道发生的一切,并可能驱动一切,但不同的zone做自己的事。处理一个视频并把它接入网络是一个zone可以做的事,我们不必浪费以太网流量来发送原始视频。”
为了简单起见,OEM希望由一个网络来做所有的事。由于以太网涉及大量的软件投资,尽可能地利用这种投资来提高开发效率。
英飞凌的Patel说:“一旦你在那种基于时间的domain协议上进行了投入,你同时也要对软件进行很大的投资。因此,一些OEM发现,如果你要进入以太网,就得all in。”
虽然以太网可能是一个长期的选择目标,但目前还不清楚它是否实用。

不同类型的网络通信

这可以归结为一个问题,即网络需求是什么。答案是受到必须传输的不同类型的数据的影响。

在一种情况下,常规的网络数据和流媒体数据之间是有区别的。网络数据往往由各种不同大小的数据包组成,并出于不同的目的在网络上向多个方向移动。平均而言,它在流量方向上是对称的,有些是来,有些是去。以太网被广泛认为是这种流量的自然选择。

相比之下,由传感器发出的流数据可能没有自然的分界线,使分组变得容易。虽然流的大块数据可以被放入数据包,但通常是在一些任意的时间间隔内完成。此外,流量往往是高度不对称和单向的。

Cadence汽车解决方案总监Robert Schweiger说:“你有大量的数据从传感器传到汽车上,而你可能只需要其它反向的一点点数据来配置传感器。对于显示器来说,情况正好相反。你有大量的数据流向显示器,显示各种东西。但它不需要与数据源进行通信。”

以太网不被视为流数据的有效网络选择。因为以太网本质上是双向的,这种后向通道容量很大程度上会被浪费掉。这可能是OEM对单一网络的渴望与实际考虑相冲突的最鲜明的例子。

还有外部数据,如V2X与当地基础设施或信息娱乐系统的通信和内部数据之间的区别,后者是在内部产生和使用的。外部通信必然是无线的,这意味着它的网络需求将不同于内部通过线束处理的数据。

Cadence的市场总监Tom Wong指出:“无线模块将通过PCIe的方式与计算机通信。”

带宽要求

以太网速度并不是低级别的控制信息传递所需要的。它是由信息娱乐、ADAS和远程信息处理的需求所驱动的。

Fritz指出:“中央式方案的主要挑战之一是带宽,它可以轻易地增加到10Gbps。我们离10Gbps还有一段距离,更不用说100G了。对于汽车以太网,目前我们的速度是1Gbps。”

但内部需求可能会超过这个数字,特别是将数据流传到中央处理器。雷达数据不需要1G的以太网,低速以太网就可以。摄像头可以用以太网,如果增加了激光雷达,那么摄像头/激光雷达数据的组合就需要高速以太网。

现在有10Gbps的PHYs,但它们很复杂,也很贵。而且它们只能作为单独的芯片使用,而不是作为集成到SoC的IP。

Schweiger说:“从商业角度以及从将进入汽车的PHY的数量来看,将这种10-Gb以太网PHY作为IP可能很有意思。最有可能的是,第一个版本将是外部PHY,以后可能是一个集成版本。”

然而,即使有了这样的IP,仍然存在着散热问题。这些驱动器会发热,需要用散热器。在小型纯驱动芯片上安装散热器成本较低。如果在整个SoC的成本中加入仅用于以太网驱动器的散热器,则成本更高。

Cadence的Wong说:“想象一下,你把一堆高速以太网PHY放入一个SoC中,你有5个不同的通道都在驱动20或30甚至50英尺长的线束。SoC会发热,所以SoC的低成本封装就别想了。你必须采用散热器封装。而成本上升不是因为芯片本身,是因为封装和散热器。”

带宽需求可能低于10Gbps(例如2.5或5Gbps),但预计不会有专用设备满足这些速度。相反,人们会从1Gbps跳到10Gbps,但将时钟拨回到所需的速率。也就是说,一个中央架构所需带宽甚至可能超过10Gbps,甚至超出了当今最先进的PHY芯片所能达到的带宽。

这也是为什么zonal架构目前最受欢迎的另一个原因。高带宽的活动可以在本地处理,更高级别的数据(与原始数据相比自然是压缩的)与中央处理器通信所需的带宽更少。

鉴于这种安排,人们(但不是普遍地)预计,以太网将作为骨干网络,所有的zone将用来与中央枢纽通信。剩下的问题是在这些zone内会发生什么,答案并不清楚。

Zonal的冲突

在一个zone内,执行着许多不同的功能。对以太网抗拒最强的是流媒体,目前往往由基于MIPI的协议主导。虽然MIPI的D-PHY和C-PHY在手机中占主导地位,但该组织已经提出了一个串行A-PHY版本,可以处理车辆中高达15米的范围。同时,新的ASA组织提出了一个不同的串行标准来处理汽车摄像头和显示器数据。目前还不清楚哪一个会占主导地位。

可用性和多个供应源是一个重要的考虑因素。Schweiger说:“我们不希望只有一个供应商,我们希望有五个,甚至更多,这样我们就不会遇到供应链问题。”

Swanson表示赞同。“许多OEM希望坚持这些标准,但他们希望标准能使他们的供应商相互竞争。”

对于速度较慢的控制相关的信息传递,CAN在历史上一直占主导地位,而且它仍然可以存在于zone内。另外,新的10-BASE-T1S提供了一个双绞线多分流选项,运行速度可达10Mbps。

Swanson指出:“10-BASE-T1S实际上是作为CAN的替代品而设计的。对于流媒体数据来说,它的速度远远不够,但对于控制来说是没问题的。”

Kouthon指出:“当你控制舒适性功能相关的ECU时(比如让座椅上下和向后倾斜的ECU),那就是一个开关,你不需要用以太网来做这个,像CAN或LIN这样的传统网络已经足够了。”

但如果异步以太网版本浮出水面,可能还有另一种选择。Schweiger说:“有些人赞成推广所谓的异步以太网通信。所以你在一个方向上的带宽很宽,在另一个方向上减少带宽。”

虽然不清楚这到底是什么,但据推测,它的好处是可以利用当前汽车以太网的工作成果,在更大程度上统一网络。

还有规模的问题。一些人认为,汽车的接口决定是受手机的影响,而手机的销量规模要比汽车大得多。如果摄像头供应商只关注手机的格式(目前是MIPI),那么这可能会压倒Tier1或OEM可能的其他选择。

网络安全和可靠性

网络安全问题显然是一个问题。MacSec是一种第二层安全协议,预计将在车辆内部署,它的可用性增加了以太网成为主要竞争者的因素。

Kouthon说:“MacSec是一种线速技术,对延迟或带宽几乎没有影响。它可以用来验证所有传感器与中央控制单元的关系,所以你会知道你收到的是否是来自车辆的真实摄像头的信息。你不是从一个中间介质那里接收的。”

但汽车上有两个主要的数据流需要保护。一种是内部产生的流量,理论上,如果没有某种物理连接,就不能被破坏。还有通过外部无线连接进入汽车的数据流。

无线信号既连接到安全关键的V2X通信,也连接到非关键的信息娱乐流。这些流也需要在堆栈的更高级别上得到保护。

Zonal架构本身可能提供更高的安全性。Kouthon说:“如果你的zone受到网关的限制,就会提高安全级别。当你有分段的VLAN时,管理安全更容易,你知道谁被授权与另一个子网络通信。”

同时,可靠性对于网络的安全关键方面非常重要。噪声如果严重到足以破坏信息,就会产生严重的影响。

Patel解释说:“屏幕如果宕机了会很烦人,但它不是安全关键。如果依赖安全连接的ADAS系统发送了错误的信息或信息被破坏,就是一场灾难了。”

虽然出于成本和重量的考虑,人们强烈希望使用非屏蔽双绞线,但车辆内的电磁干扰太大,似乎需要屏蔽双绞线来防止噪音。

汽车以太网互操作

改善汽车以太网中TSN功能还有更多的工作需要去做。以太网是一个OSI第二层协议,附着在各种PHY(第一层)选项上。对于标准的以太网(例如用于办公室网络)第三层通常是IP,第四层通常是TCP,但偶尔是UDP。

因此,虽然以太网在许多应用中发挥着作用,但它只是整个网络堆栈中的一层。但是,今天的“汽车以太网”的概念采用了第二层的概念,并将其分配给整个堆栈。事实上,随着TSN功能的标准化,这似乎已经进入了人们的思维。

Schlechter说:“在以太网之前,汽车领域的每一个通信协议都是一个完整的堆栈。在汽车以太网中,他们实际上是在谈论一些传输的问题。”

图2:七层OSI网络堆栈。在左边,一个典型的桌面计算堆栈通过传输层显示出来。在右边,TSN的功能已经跨越了通常远远超出以太网范围的层。

TSN的功能是在提供系统间互操作的层面上指定的,它包括传统上可能存在于更高层次的元素。全栈倾向于用软件来实现上层,硬件在第一层和第二层的一部分占主导地位。事实证明,虽然系统可以互操作,但TSN规范还没有被设定在一个允许芯片明确互操作的水平。

Swanson说:“结果是,针对这些不同的市场提供了不同'口味’的以太网。有一个汽车配置文件,一个工业配置文件,一个服务供应商配置文件,以及一个航空航天配置文件。还可能有其他一些。我们也在与5G领域交谈,以确保所有这些东西都能一起工作。”

Schlechter说:“然而,这与最初的以太网不一致。这不是以太网的工作方式。在以太网这个词前面真的不应该有那些东西。它只是以太网而已。”

Schlechter继续说:“如果芯片制造商能够将一个芯片卖到多个市场,那么汽车芯片的经济效益就会显著改善。即使你有这些不同的垂直行业在使用它,到最后,有时同一个组件可以进入这些不同的市场。”

其他人也同意。Avnu联盟的芯片验证任务组主席、ADI确定性以太网技术组的营销总监Tom Weingartner说:“今天在标准以太网中,MAC(media access controller,位于第二层底部)就是MAC,而我们想通过TSN达到的目的只是另一个MAC。但规范并不一定会说,'你需要这样改变那个MAC,以便所有人的MAC都能一起工作’。”

这在很大程度上与合规性本身无关,因为这些TSN功能大多是可选的。Schlechter指出:“这就是以太网规模经济的方式。每当有人使用以太网时,就会有一百种你不不见得会使用的东西。”

但是在功能存在的地方,很难比较芯片以了解哪些具有必要的功能和性能。因此,Avnu联盟正在努力在一定程度上进一步指定功能,以促进或至少澄清TSN功能的不同芯片实现之间的互操作性。

Schlechter说:“有时我们只是需要一个共同的标准。”

结论

汽车网络在很大程度上仍然是一个开放的讨论。它在OEM中得到了很高的重视,以至于大众已经成立了一个部门专门处理网络问题。目前人们更倾向于以太网为骨干的zonal架构,尽管这还不是确定的答案,一些OEM可能会走不同的方向。

在可预见的未来,带宽需求将继续增长,尽管它们可能在未来某个遥远的时刻趋于平稳。Wong说:“可能是5年,也可能是10年,但我们将达到L5。而这代表了最高的实际带宽要求。”

在zone内,可以包含许多可能的网络。就目前而言,这种多样性可能仍会持续。问题是它们是否会随着时间的推移迁移到某种版本的以太网。这不会很快发生,因为出于设计风险的考虑,变化将根据需要逐步进行。

Swanson说:“OEM绝对有兴趣在一个单一的网络上进行整合,因为它使一切变得更简单。但你不可能在一夜之间变成一个单一的网络。”

而且,以太网在汽车中的渗透程度还需要很多年才能知道。

[参考文章]

Will Automotive Ethernet Win? — Bryon Moyer


from A to B

(0)

相关推荐