NCCN非小细胞肺癌临床实践指南2021.1版(7)

星期三                    

2020年12月9日       

不忘初心,砥砺前行!

非小细胞肺癌指南

目录


分子学检测和生物标志物分析原则

NSCL-H

NSCL-H,1/5

分子学检测的注意事项、标本要求、检测方法

英文版

中文版

非小细胞肺癌的分子诊断学检查

●已确定许多基因的变异会影响治疗方案的选择。检测肺癌标本的这些基因变异,对于确定潜在有效的靶向治疗以及避免不太可能提供临床获益的治疗是重要的。

●用于选择靶向治疗的一些方法包括预测性免疫组化分析,这与用于确定肿瘤类型和谱系的免疫组化检查不同。

●对分子学结果的应用和解读至关重要的分子学检测的主要要素包括:

►在经过适当认证的实验室进行检测,至少有CLIA认证

►理解所使用的方法学以及这些方法的主要局限性

►理解通过一种特定分析方法可检测变异的范围(以及那些未检测的变异)

►在检测前,了解肿瘤标本是否进行过病理学检查和肿瘤富集(即显微切割、肉眼分离)

►检测实验室接受的样品类型

●标本采集和管理:

►虽然肿瘤检测已主要集中在使用福尔马林固定石蜡包埋(FFPE)的组织,但是,越来越多的实验室接受其它类型的标本,尤其是未通过FFPE流程处理的细胞病理学涂片。尽管FDA批准的多种伴随诊断分析不包括对细胞块的检测,但是当它是唯一或最好的材料时,强烈建议对这些样本类型进行检测。

►当使用微创技术获取的样本来进行非小细胞肺癌的分子学检测时,存在的一个主要局限性是:样本量可能不足够用于分子、生物标志物以及组织学检查。因此,为了能够进行所有适当的检测,支气管镜操作医生和介入放射科医生应该获取足够的组织。

►当组织极少时,实验室应有效地利用技术来最大限度地利用组织进行分子学和辅助检查,包括小活检样本组织学检查专用协议、包括用于诊断和预测性检测的“预”滑动切片。

●检测方法

►以下分别列出每一种适当可行的检测方法;然而,通常考虑联合使用几种方法:

◊二代测序(NGS)用于临床实验室。单独NGS分析并不能检出所有变异类型,熟悉单独分析或联合分析可识别的变异类型是很重要的。

◊建议此时在可行的情况下通过基于广泛组合的方法进行检测(最常采用NGS)。对于在广泛组合的检测中未发现驱动癌基因的患者(尤其是从不吸烟者),请考虑行基于RNA的NGS检测(如果尚未进行)以最大程度地发现融合事件。

◊实时聚合酶链反应(PCR)是一种具有高度针对性的检测方法(针对特定突变)。采用该技术只能针对那些特定的改变进行检测评估。

◊桑格测序需要最大程度的肿瘤富集。未改良的桑格测序不适合用于富集后肿瘤含量仍不足25%-30%的标本的突变检测,且重要的是要认识到它不适合用于分析识别亚克隆事件(如耐药突变)。如果使用桑格测序,几乎都建议使用肿瘤富集方法。

◊可使用的其它方法,包括上面未列出的复合方法,如SNaPshot技术(美国应用生物公司(ABI)开发,是一种基于荧光标记单碱基延伸原理的分型技术,也称小测序,主要针对中等通量的SNP分型项目)、MassARRAY(核酸质谱分析系统])。

◊荧光原位杂交(FISH)分析用于拷贝数、扩增以及结构改变如基因重排等许多分析检查。

◊免疫组化(IHC)专门用于某些特定分析,可作为一个有用的替代或其它分析的筛选方法。

NSCL-H,2/5

EGFR

英文版

中文版

●分析的分子靶点

►一般而言,观察到的下述突变/变异是非重叠的,尽管有1%–3%的非小细胞肺癌可能有并存的变异。

►EGFR(表皮生长因子受体)基因突变:EGFR是一种受体酪氨酸激酶,通常见于上皮细胞表面,经常在多种人类恶性肿瘤中过表达。

◊最常描述的EGFR突变(19外显子缺失、21外显子p.L858R点突变)与对EGFR酪氨酸激酶抑制剂(TKI)治疗起效相关;最新数据表明,没有EGFR敏感突变的肿瘤在任何线的治疗中均不应使用EGFR TKI。

◊考虑在诊断性活检或手术切除后的样本上增加针对EGFR突变的分子学检测,以确保EGFR突变检测结果可用于IB期—IIIA期NSCLC患者的辅助治疗决策。

◊许多较不常见的EGFR变异,累计占EGFR突变NSCLC的~10%(即19外显子插入、p.L861Q、p.G719X、p.S768I)也与对EGFR TKI治疗起效相关,尽管研究的患者数较少。

◊EGFR外显子20(EGFRex20)突变是一个混杂组,其中一些对靶向治疗有反应,需要详细了解具体的变异。

—EGFR p.T790M突变是最常观察到的引起对第一代和第二代EGFR TKI耐药的一种机制。对于以p.T790M为主要耐药机制的第一代或第二代TKI药物治疗中疾病进展的患者,第三代TKI通常有效。如果在先前没有接受过EGFR TKI治疗的情况下观察到p.T790M,则必须进行遗传咨询和可能的胚系基因变异检测。

—其它大多数EGFRex20变异是框内重复或插入突变的一个多元化组。

▪ 这些变异通常与对EGFR TKI缺乏疗效有关,但以下情况除外:

p.A763_Y764insFQEA与对TKI治疗的敏感性有关

p. A763_Y764insLQEA可能与对TKI治疗的敏感性有关

▪ 由于这个原因,EGFRex20插入突变的具体序列很重要,一些检测方法会在不报告具体序列的情况下鉴定是否存在EGFRex20插入。在这种情况下,需要进行其它测试以进一步阐明EGFRex20插入。

◊随着NGS检测使用的增加,发现了越来越多的其它EGFR变异;然而,不太可能很好地确认个体变异的临床意义。

◊某些临床病理特征(如吸烟状况、种族、组织学)与EGFR突变的存在相关;然而,这些特征不应用于挑选进行检测的患者。

◊检测方法:检测EGFR突变状态的方法有实时PCR、桑格测序(理想的是配以肿瘤富集)以及最常用的NGS。

NSCL-H,3/5

ALK、ROS1、BRAF、KRAS

英文版

中文版

►ALK(间变性淋巴瘤激酶)基因重排:ALK是一种受体酪氨酸激酶,可在非小细胞肺癌中重排,导致通过ALK激酶域的信号失调和失当。

◊ALK最常见的融合伴侣是棘皮类微管相关样蛋白4(EML4),尽管已经发现了许多其它融合伴侣。

◊存在一种ALK重排与对ALK TKI起效相关。

◊某些临床病理特征(如吸烟状况和组织学)与ALK重排的存在相关;然而,这些特征不应用于挑选进行检测的患者。

◊检测方法:分离FISH探针是第一个被广泛采用的方法。免疫组化可作为一种有效的筛选策略。FDA批准的IHC(ALK [D5F3] CDx分析)可作为独立检测,不需要FISH确认。许多NGS方法可以检测ALK融合,在某些情况下使用定向实时PCR法,虽然不太可能发现与新的伴侣融合。

►ROS1(ROS原癌基因1)基因重排:ROS1是一种受体酪氨酸激酶,可在非小细胞肺癌中重排,导致通过ROS1激酶域的信号失调和失当。

◊ROS1有许多融合伴侣,常见的融合伴侣包括:CD74、SLC34A2、CCDC6和FIG。

◊存在一种ROS1重排与对口服ROS1 TKI起效相关。

◊某些临床病理特征(如吸烟状况和组织学)与ROS1重排的存在相关;然而,这些特征不应用于挑选进行检测的患者。

◊检测方法:可以采用分离FISH探针法;然而,它可能检测不出FIG-ROS1变异。可以采用IHC;然而,免疫组化用于检测ROS1融合的特异性低,因此如果使用ROS1 IHC作为一种筛查手段,后续的验证性检测是一个必要的组成部分。许多NGS方法可以检测ROS1融合,但是基于DNA的NGS可能检测不出ROS1融合。在某些情况下使用定向实时PCR法,虽然不太可能发现与新的伴侣融合。

►BRAF(B-Raf原癌基因)点突变:BRAF基因是一种丝氨酸/苏氨酸激酶,是典型的MAP/ERK信号通路的一部分。BRAF激活突变导致通过MAP/ERK通路的信号失控。

◊BRAF突变可见于非小细胞肺癌中。已发现一个导致p.v600e改变的特定突变的存在与联合口服BRAF与MEK抑制剂治疗起效相关。

◊应注意BRAF的一些其它突变也可见于非小细胞肺癌中,这些突变对治疗选择的影响目前尚不太清楚。

◊检测方法:检测BRAF突变状态的方法有实时PCR、桑格测序(理想的是配以肿瘤富集)和最常用的NGS。尽管抗-BRAF p.V600E特异性单克隆抗体可在市场上买到,而且在一些研究中使用了这种方法进行检查,但是,只能在经过大规模的验证之后才能使用。

►KRAS(KRAS原癌基因)点突变:KRAS是一个本身具有GTP酶活性的G-蛋白,活化突变将导致通过MAP/ERK通路的信号失控。

◊在非小细胞肺癌中的KRAS突变最常见于12密码子,虽然可以见到其它部位的突变。

◊与肿瘤无KRAS突变的患者相比,存在一种KRAS突变预示生存期差。

◊KRAS突变与对EGFR TKI治疗的疗效降低相关。

◊由于出现可以靶向的重叠变异的可能性较低,因此,存在一种已知KRAS激活突变可以识别将不可能从进一步分子检测中获益的患者。

NSCL-H,4/5

MET、RET、NTRK、靶向治疗中进展情况下的检测

英文版

中文版

►MET(间质-上皮转化)外显子14(METex14)跳跃变异:MET是一种受体酪氨酸激酶。在NSCLC中,可能发生导致外显子14缺失的突变。METex14的缺失会导致调节失调和不适当的信号传导。

◊METex14跳跃突变的存在与对口服MET TKI的反应性相关。

◊一系列的分子学变异导致METex14跳跃。

◊检测方法:基于NGS的检测法是检测METex14跳跃事件的主要方法,基于RNA的NGS显示出检测的改进。IHC不是检测METex14跳跃的方法。

►RET(转染过程中重排)基因重排:RET是一种受体酪氨酸激酶,可以在NSCLC中重排,通过RET激酶结构域导致失调和不适当的信号传导。

◊常见的融合伴侣是KIF5B、NCOA4和CCDC6;但是,已经确定了许多其它融合伴侣。

◊RET重排的存在与对口服RET TKI的反应性相关,而与融合伴侣无关。

◊检测方法:可以使用FISH Break-Apart探针方法;但是,它可能检测不到一些融合。靶向实时逆转录酶PCR分析法用于某些情况,尽管它们不太可能检测到与新型伴侣的融合。基于NGS的方法具有高特异性,并且基于RNA的NGS用于融合检测优于基于DNA的NGS。

►NTRK(神经营养因子受体酪氨酸激酶)基因融合

◊NTRK1/2/3是酪氨酸受体激酶,在NSCLC和其它肿瘤类型中很少重新排列,发生重排将导致信号失调和失当。

◊已经确定了有许多融合伴侣。

◊迄今为止,除了没有其它驱动改变外,尚未发现与这些融合相关的任何特定的临床病理特征。

◊NTRK1/2/3中的点突变通常是非激活性的,尚没有其与靶向治疗相关性的研究。

◊检测方法:可以使用多种方法来检测NTRK基因融合,包括:FISH、IHC、PCR和NGS;可能出现假阴性。IHC法由于在一些组织中存在基础表达而变得复杂。FISH检测法可能至少需要3组探针才能进行全面分析。NGS检测法可以检测到广泛的变化。基于DNA的NGS可能检测不到NTRK1和NTRK3融合。

●对于在治疗开始之前无法合理完成对所有生物标志物全面评估的病例,如果病灶可以进行取样和检测,考虑在一线治疗中出现疾病进展时复查基因组合测序或选定的生物标志物检测。

●靶向治疗中进展情况下的检测:

►对于上述列出的许多分析物,人们对治疗耐药分子机制的认识逐渐增加。对靶向治疗中活跃进展的标本进行重新检测,可为制定下一步合理的治疗方案提供线索:

◊对于已经接受过EGFR TKI治疗、具有潜在EGFR敏感突变的患者,合理的检测最起码应包括高敏感性的p.t790M评估;当没有p.T790M的证据时,检测其它耐药机制(MET扩增、ERBB2扩增)来指导患者接受其它治疗。p.T790M是否存在,可指导患者接受第三代EGFR TKI治疗。

—检测EGFR p.T790M的分析法,分析灵敏度应该至少有5%的等位基因分数。如果p.T790M是在亚克隆事件中,初始敏感突变可用作许多分析的内部对照,以确定p.T790M是否在检测范围内。

◊对于已接受过ALK TKI治疗、具有潜在ALK重排的患者,尚不清楚识别特定酪氨酸激酶域突变是否可以确定下一步的合理治疗方案,尽管一些初步数据表明一些特定激酶域突变可影响下一线治疗。

NSCL-H,5/5

PD-L1、ctDNA检测

英文版

中文版

●PD-L1(程序性死亡配体1):PD-L1是一个可以表达于肿瘤细胞的共调节分子,抑制T细胞介导的细胞死亡。T细胞表达PD-1,一个负调控因子,与配体(包括PD-L1[CD274]或PD-L2[CD273])结合。存在PD-L1时,T细胞活性被抑制。

►检查点抑制剂抗体阻断PD-1和PD-L1的相互作用,从而提高内源性T细胞的抗肿瘤作用。

►可以利用IHC检测PD-L1以识别最可能对一线抗PD-1/PD-L1治疗起效的肿瘤。

◊已经开发出用于IHC分析PD-L1表达的各种不同的抗体克隆,一些呈现相对等价,一些则不等价。

◊PD-L1 IHC的判读通常关注表达任何水平膜染色的肿瘤细胞的比例,因此是一种线性变量,在其它一些肿瘤类型中评分系统可能不同。

◊FDA批准的PD-L1伴随诊断方法可指导帕博丽珠单抗用于治疗NSCLC患者,是基于肿瘤比例评分(TPS)。TPS是在任何强度下显示部分或全部膜染色的活的肿瘤细胞的百分比。

◊检测结果阳性和阴性的界定取决于使用的特定抗体和平台,其对每一种检查点抑制剂治疗可能是唯一的。有可能用于检测PD-L1的多种不同方法已增加了病理科医生和肿瘤科医生的困扰。

◊尽管在携带驱动突变的患者中,PD-L1表达可以升高,但针对致癌驱动突变的靶向治疗应优选于免疫检查点抑制剂治疗。

●血浆游离细胞/循环肿瘤DNA检测

►不应使用游离细胞/循环肿瘤DNA检测来代替组织学诊断。

►一些实验室提供外周循环中核酸分子改变的检测,最常见于经处理的血浆中(有时称为“液体活检”)。

►一些研究表明:游离细胞肿瘤DNA检测通常具有非常高的特异性,但灵敏度明显折损,假阴性率高达30%。

►尚未确立游离细胞肿瘤DNA分析性能特征的标准,与基于组织的检测相比,没有关于此类检测性能特征的指南。

►游离细胞肿瘤DNA检测可发现与一些与所关注的病变无关的改变,如:不确定潜能的克隆性造血(CHIP)。

►在一些特定的临床情况下,可以考虑使用游离细胞/循环肿瘤DNA检测,尤其是:

◊如果患者的全身状况不适合行有创的组织取样。

◊初诊时,如果在病理确诊为非小细胞肺癌后没有足够的样本行分子学分析,则只有在有计划对所有游离细胞/循环肿瘤DNA检测未发现致癌驱动突变(有关可用的靶向治疗选项的致癌驱动因素,请参见NSCL-18)的患者接着行基于组织的分析时,才能行该项目(游离细胞/循环肿瘤DNA)检测。


为转移性NSCLC患者筛选新疗法的新型生物标志物NSCL-I

英文版

中文版

参考文献:

1.Ou SH, Kwak EL, Siwak-Tapp C, et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol 2011;6:942-946.

2.Camidge RD, Ou S-HI, Shapiro G, et al. Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer. J Clin Oncol 2014;32(Suppl 5):Abstract 8001.

3.Wolf J, Seto T, Han JY, et al; GEOMETRY mono-1 Investigators. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med 2020;383:944-957.

4.Li BT, Shen R, Buonocore D, et al. Ado-trastuzumab emtansine in patients with HER2 mutant lung cancers: Results from a phase II basket trial. J Clin Oncol 2018;36:2532-2537.

5.Smit EF, Nakagawa K, Nagasaka Met al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-mutated metastatic non-small cell lung cancer: interim results of DESTINY-Lung01[abstract]. J Clin Oncol 2020;38:Abstract 9504.

END

(0)

相关推荐