交换机路由器设置需要看看这些,多看几遍

网络管理,网络工程必须学习看懂这些方式和命令,慢慢的,慢慢的就差不多就都会了,设置最多的就是交换机和路由器,三层交换机。这些内容熟悉熟练的过程需要不多认知和分析判断。如果想入这行,必须有空就看看,用用这些方式方法配置文章,熟读唐诗三百首,不会写诗也会吟...

命令状态

1. router>

路由器处于用户命令状态这时用户可以看路由器的连接状态访问其它网络和主机但不能看到和更改路由器的设置内容。

2. router#

在 router>提示符下键入 enable,路由器进入特权命令状态 router#这时不但可以执行所有的用户命令还可以看到和更改路由器的设置内容。

3. router(config)#

在 router#提示符下键入configure terminal,出现提示符router(config)#此时路由器处于全局设置状态这时可以设置路由器的全局参数。

4. router(config-if)#; router(config-line)#;router(config-router)#;…路由器处于局部设置状态这时可以设置路由器某个局部的参数。

5. >

路由器处于 RXBOOT 状态在开机后 60 秒内按 ctrl-break 可进入此状态这时路由器不能完成正常的功能只能进行软件升级和手工引导。

6. 设置对话状态

这是一台新路由器开机时自动进入的状态在特权命令状态使用 SETUP 命令也可以进入此状态,这时可通过对话方式对路由器进行设置。

交换机的几种配置模式简介

1、普通用户模式

开机直接进入普通用户模式,在该模式下我们只能查询交换机的一些基础信息,如版本号(show version)等。

2、特权用户模式

在普通用户模式下输入enable命令即可进入特权用户模式,在该模式下我们可以查看交换机的配置信息和调试信息等等。

3、全局配置模式

在特权用户模式下输入c terminal命令即可进入全局配置模式,在该模式下主要完成全局参数的配置,具体配置以后介绍。

4、接口配置模式

在全局配置模式下输入interface interface-list即可进入接口配置模式,在该模式下主要完成接口参数的配置,具体配置以后介绍。

5、vlan配置模式

在全局配置模式下输入vlan vlan-number即可进入vlan配置模式,在该配置模式下可以完成vlan的一些相关配置。

6、恢复交换机的缺省配置

在实验开始时,为了不让实验受交换机以前的配置影响,常常需要先恢复交换机的缺省配置。在特权用户模式下顺序使用erase,restet命令即可恢复交换机的缺省配置。

交换机说明

说明1:

在实验环境中,如果配置两个vlan:vlan1,vlan2,注意其中vlan1是交换机默认的vlan,既不能创建也不能删除,所有端口都属于vlan1,所以应该首先创建vlan2,然后为各个vlan分配端口(switchportinterface-list)。

说明2:

①在使用命令行进行配置的时候,在任何模式下均可以使用“?”来帮助我们完成配置。

②使用“?”可以查询任何模式下可以使用的命令;或者某参数后面可以输入的参数;或者以某字母开始的命令。

例如在全局配置模式下输入“?”或“show?”或“s?”,可以看看它们分别有什么帮助信息显示。

如果你不能确认当前模块所在的插槽的编号,可以通过命令行中的show 命令来查看插槽以及插槽上的端口信息;也可以在路由器特权EXEC模式下执行showversion命令,在路由器版本信息中有每个模块所在插槽编号的信息。

二层、三层交换机的区别

二层交换技术

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

  (1) 当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;

  (2) 再去读 取包头中的目的MAC地址,并在地址表中查找相应的端口;

  (3) 如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

  (4) 如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

  不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

  从二层交换机的工作原理可以推知以下三点:

  (1) 由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;

  (2) 学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;

  (3) 还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。

  以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。

路由技术

路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。工作原理是在路由器的内部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向那里走,如果能从路由表中找到数据包下一步往那里走,把链路层信息加上转发出去;如果不能知道下一步走向那里,则将此包丢弃,然后返回一个信息交给源地址。

路由技术实质上来说不过两种功能:决定最优路由和转发数据包。路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。

而路由表的维护,也有两种不同的方式。一种是路由信息的更新,将部分或者全部的路由信息公布出去,路由器通过互相学习路由信息,就掌握了全网的拓扑结构,这一类的路由协议称为距离矢量路由协议;另一种是路由器将自己的链路状态信息进行广播,通过互相学习掌握全网的路由信息,进而计算出最佳的转发路径,这类路由协议称为链路状态路由协议。

由于路由器需要做大量的路径计算工作,一般处理器的工作能力直接决定其性能的优劣。

当然这一判断还是对中低端路由器而言,因为高端路由器往往采用分布式处理系统体系设计。

三层交换技术

近年来的对三层技术的宣传,耳朵都能起茧子,到处都在喊三层技术,有人说这是个非常新的技术,也有人说,三层交换嘛,不就是路由器和二层交换机的堆叠,也没有什么新的玩意,事实果真如此吗?下面先来通过一个简单的网络来看看三层交换机的工作过程。

组网比较简单

使用IP的设备A------------------------三层交换机------------------------使用IP的设备B

比如A要给B发送数据,已知目的IP,那么A就用子网掩码取得网络地址,判断目的IP是否与自己在同一网段。

如果在同一网段,但不知道转发数据所需的MAC地址,A就发送一个ARP请求,B返回其MAC地址,A用此MAC封装数据包并发送给交换机,交换机起用二层交换模块,查找MAC地址表,将数据包转发到相应的端口。

如果目的IP地址显示不是同一网段的,那么A要实现和B的通讯,在流缓存条目中没有对应MAC地址条目,就将第一个正常数据包发送向一个缺省网关,这个缺省网关一般在操作系统中已经设好,对应第三层路由模块,所以可见对于不是同一子网的数据,最先在MAC表中放的是缺省网关的MAC地址;

然后就由三层模块接收到此数据包,查询路由表以确定到达B的路由,将构造一个新的帧头,其中以缺省网关的MAC地址为源MAC地址,以主机B的MAC地址为目的MAC地址。通过一定的识别触发机制,确立主机A与B的MAC地址及转发端口的对应关系,并记录进流缓存条目表,以后的A到B的数据,就直接交由二层交换模块完成。这就通常所说的一次路由多次转发。

以上就是三层交换机工作过程的简单概括,可以看出三层交换的特点:

1、由硬件结合实现数据的高速转发。

2、这就不是简单的二层交换机和路由器的叠加,三层路由模块直接叠加在二层交换的高速背板总线上,突破了传统路由器的接口速率限制,速率可达几十Gbit/s。算上背板带宽,这些是三层交换机性能的两个重要参数。

3、简洁的路由软件使路由过程简化。

4、大部分的数据转发,除了必要的路由选择交由路由软件处理,都是又二层模块高速转发,路由软件大多都是经过处理的高效优化软件,并不是简单照搬路由器中的软件。

结论

二层交换机用于小型的局域网络。这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。

路由器的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。

三层交换机的最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;

如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;

如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。

一般来说,在内网数据流量大,要求快速转发响应的网络中,如全部由三层交换机来做这个工作,会造成三层交换机负担过重,响应速度受影响,将网间的路由交由路由器去完成,充分发挥不同设备的优点,不失为一种好的组网策略,当然,前提是客户的腰包很鼓,不然就退而求其次,让三层交换机也兼为网际互连。

二层交换机基本配置

2016-08-03 弱电行业网

1、进入特权模式

switch>             (用户模式)

进入特权模式  enable

switch>enable  按回车键Enter

switch#                        (特权模式)

2、进入全局配置模式

进入全局配置模式  configure terminal

switch#configureterminal  按回车键Enter

Switch(config)#                 (全局配置模式)

3、交换机命名

交换机命名hostname CY3C_HTLZYQ_P6ZHSA   (以CY3C_HTLZYQ_P6ZHSA为例)

Switch(config)#hostnameCY3C_HTLZYQ_P6ZHSA    按回车键Enter

CY3C_HTLZYQ_P6ZHSA(config)#

4、创建Vlan

创建Vlan

CY3C_HTLZYQ_P6ZHSA(config)#Vlan+n           (n代表Vlan编号正常范围2—1000)按回车键Enter

CY3C_HTLZYQ_P6ZHSA(config-vlan)#name+名字   (给Vlan创建个名字)

5、创建管理Vlan和管理IP地址

创建管理Vlan和管理IP地址

CY3C_HTLZYQ_P6ZHSA(config)#Vlan+n

CY3C_HTLZYQ_P6ZHSA(config-vlan)#name+名字  (根据自己想要的结果命名)按exit退出

CY3C_HTLZYQ_P6ZHSA(config)#interfaceVlan +n  (n代表Vlan编号正常范围2—1000)按回车键Enter

CY3C_HTLZYQ_P6ZHSA(config-if)#ipaddress +管理ip地址 +子网掩码     按回车键Enter

CY3C_HTLZYQ_P6ZHSA(config-if)#noshutdown    (开启 Vlan)

6、设定此交换端口为trunk口

设定此交换端口为trunk口

CY3C_HTLZYQ_P6ZHSA(config)#interface+端口(比如F0/1)   按回车键Enter

CY3C_HTLZYQ_P6ZHSA(config-if)#switchportmode trunk  (设定此交换端口为trunk即中继端口)按回车键Enter

CY3C_HTLZYQ_P6ZHSA(config-if)#noshutdown

7、把端口划分到Vlan内

把端口划分到Vlan内

CY3C_HTLZYQ_P6ZHSA(config)#interface+端口【(比如F0/5) (把单个端口划分到Vlan内)】

CY3C_HTLZYQ_P6ZHSA(config-if)#switchportmode access    (设定f 0/1端口的接入类型为接入端口即accessports.)

CY3C_HTLZYQ_P6ZHSA(config-if)#switchportaccess vlan +n ((把此端口即接入端口划分到vlan n中,n为vlan 号)按回车键Enter

CY3C_HTLZYQ_P6ZHSA(config-if-range)#noshutdown

或者CY3C_HTLZYQ_P6ZHSA(config)#interfacerange +端口  【(比如FO/5 -10 ) 把多个端口同时划分到一个Vlan内】

CY3C_HTLZYQ_P6ZHSA(config-if-range)#switchport mode access

CY3C_HTLZYQ_P6ZHSA(config-if-range)#switchport access Vlan +n  (n代表Vlan编号正常范围2—1000)按回车键Enter

CY3C_HTLZYQ_P6ZHSA(config-if-range)#no shutdown

8、配置交换机远程密码

配置交换机远程密码

CY3C_HTLZYQ_P6ZHSA(config)#enablepassword cisco  (配置使能密码:cisco)

CY3C_HTLZYQ_P6ZHSA(config)#linevty 0 5

CY3C_HTLZYQ_P6ZHSA(config-line)#passwordcisco     (配置用户密码:cisco)

CY3C_HTLZYQ_P6ZHSA(config-line)#login

CY3C_HTLZYQ_P6ZHSA#write   (进行配置保存,避免交换机断电后配置消失)

9、一些查看交换机的简单命令

一些查看交换机的简单命令

(1):showrun  查看交换机配置信息

(2):showVlan 查看Vlan详细信息

(3):showip interface brief   查看接口信息

(4):showcdp nerghbors        显示直连的相邻cisco设备及其详细信息

(5):showcdp neighbors detail 显示ip地址和IOS版本和类型,并且包括show cdpneighbor命令的所有信息。

第四层交换机的原理

四层交换机的原理

OSI模型的第四层是传输层。传输层负责端对端通信,即在网络源和目标系统之间协调通信。在IP协议栈中这是TCP(一种传输协议)和UDP(用户数据包协议)所在的协议层。

在第四层中,TCP和UDP标题包含端口号(portnumber),它们可以唯一区分每个数据包包含哪些应用协议(例如HTTP、FTP等)。端点系统利用这种信息来区分包中的数据,尤其是端口号使一个接收端计算机系统能够确定它所收到的IP包类型,并把它交给合适的高层软件。端口号和设备IP地址的组合通常称作“插口(socket)”。

1和255之间的端口号被保留,他们称为“熟知”端口,也就是说,在所有主机TCP/IP协议栈实现中,这些端口号是相同的。除了“熟知”端口外,标准UNIX服务分配在256到1024端口范围,定制的应用一般在1024以上分配端口号。分配端口号的最近清单可以在RFc1700”Assigned Numbers”上找到。TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第4层交换的基础。

"熟知"端口号举例:

应用协议     端口号

FTP  20(数据)        21(控制)

TELNET 23

SMTP 25

HTTP 80

NNTP 119

NNMP 16

              162(SNMP traps)

TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第四层交换的基础。

具有第四层功能的交换机能够起到与服务器相连接的“虚拟IP”(VIP)前端的作用。

每台服务器和支持单一或通用应用的服务器组都配置一个VIP地址。这个VIP地址被发送出去并在域名系统上注册。 

在发出一个服务请求时,第四层交换机通过判定TCP开始,来识别一次会话的开始。然后它利用复杂的算法来确定处理这个请求的最佳服务器。一旦做出这种决定,交换机就将会话与一个具体的IP地址联系在一起,并用该服务器真正的IP地址来代替服务器上的VIP地址。

每台第四层交换机都保存一个与被选择的服务器相配的源IP地址以及源TCP 端口相关联的连接表。然后第四层交换机向这台服务器转发连接请求。所有后续包在客户机与服务器之间重新影射和转发,直到交换机发现会话为止。

在使用第四层交换的情况下,接入可以与真正的服务器连接在一起来满足用户制定的规则,诸如使每台服务器上有相等数量的接入或根据不同服务器的容量来分配传输流。

如何选用合适的第四层交换

a,速度

为了在企业网中行之有效,第四层交换必须提供与第三层线速路由器可比拟的性能。也就是说,第四层交换必须在所有端口以全介质速度操作,即使在多个千兆以太网连接上亦如此。千兆以太网速度等于以每秒1488000 个数据包的最大速度路由(假定最坏的情形,即所有包为以及网定义的最小尺寸,长64字节)。

b,服务器容量平衡算法 

依据所希望的容量平衡间隔尺寸,第四层交换机将应用分配给服务器的算法有很多种,有简单的检测环路最近的连接、检测环路时延或检测服务器本身的闭环反馈。在所有的预测中,闭环反馈提供反映服务器现有业务量的最精确的检测。

c,表容量

应注意的是,进行第四层交换的交换机需要有区分和存贮大量发送表项的能力。交换机在一个企业网的核心时尤其如此。许多第二/ 三层交换机倾向发送表的大小与网络设备的数量成正比。对第四层交换机,这个数量必须乘以网络中使用的不同应用协议和会话的数量。因而发送表的大小随端点设备和应用类型数量的增长而迅速增长。第四层交换机设计者在设计其产品时需要考虑表的这种增长。大的表容量对制造支持线速发送第四层流量的高性能交换机至关重要。

d,冗余 

第四层交换机内部有支持冗余拓扑结构的功能。在具有双链路的网卡容错连接时,就可能建立从一个服务器到网卡,链路和服务器交换器的完全冗余系统。

多看看或许有些内容你就需要,能够解决你的一些问题。谁也不可能记住所有难点和问题,但是解决问题的办法和思路不能断。平时总结积累也是至关重要..

(0)

相关推荐