用Python爬取了《扫黑风暴》数据,并将其可视化分析后,终于知道它为什么这么火了~
大家好,我是辰哥~
今天来跟大家分享一下从数据可视化角度看扫黑风暴~
绪论 如何查找视频id 项目结构 制作词云图 制作最近评论数条形图与折线图 制作每小时评论条形图与折线图 制作最近评论数饼图 制作每小时评论饼图 制作观看时间区间评论统计饼图 制作扫黑风暴主演提及占比饼图 制作评论内容情感分析图 评论的时间戳转换为正常时间 评论内容读入CSV 统计一天各个时间段内的评论数 统计最近评论数 爬取评论内容 爬取评论时间 一.爬虫部分 二.数据处理部分 三. 数据分析
绪论
本期是对腾讯热播剧——扫黑风暴的一次爬虫与数据分析,耗时两个小时,总爬取条数3W条评论,总体来说比较普通,值得注意的一点是评论的情绪文本分析处理,这是第一次接触的知识。
爬虫方面:由于腾讯的评论数据是封装在json里面,所以只需要找到json文件,对需要的数据进行提取保存即可。
视频网址:https://v.qq.com/x/cover/mzc00200lxzhhqz.html 评论json数据网址:https://video.coral.qq.com/varticle/7225749902/comment/v2 注:只要替换视频数字id的值,即可爬取其他视频的评论
如何查找视频id?
项目结构:
一. 爬虫部分:
1.爬取评论内容代码:spiders.py
import requests
import re
import random
def get_html(url, params):
uapools = [
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14'
]
thisua = random.choice(uapools)
headers = {'User-Agent': thisua}
r = requests.get(url, headers=headers, params=params)
r.raise_for_status()
r.encoding = r.apparent_encoding
r.encoding = 'utf-8' # 不加此句出现乱码
return r.text
def parse_page(infolist, data):
commentpat = ''content':'(.*?)''
lastpat = ''last':'(.*?)''
commentall = re.compile(commentpat, re.S).findall(data)
next_cid = re.compile(lastpat).findall(data)[0]
infolist.append(commentall)
return next_cid
def print_comment_list(infolist):
j = 0
for page in infolist:
print('第' + str(j + 1) + '页\n')
commentall = page
for i in range(0, len(commentall)):
print(commentall[i] + '\n')
j += 1
def save_to_txt(infolist, path):
fw = open(path, 'w+', encoding='utf-8')
j = 0
for page in infolist:
#fw.write('第' + str(j + 1) + '页\n')
commentall = page
for i in range(0, len(commentall)):
fw.write(commentall[i] + '\n')
j += 1
fw.close()
def main():
infolist = []
vid = '7225749902';
cid = '0';
page_num = 3000
url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2'
#print(url)
for i in range(page_num):
params = {'orinum': '10', 'cursor': cid}
html = get_html(url, params)
cid = parse_page(infolist, html)
print_comment_list(infolist)
save_to_txt(infolist, 'content.txt')
main()
2.爬取评论时间代码:sp.py
import requestsimport reimport random
def get_html(url, params): uapools = [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14' ]
thisua = random.choice(uapools) headers = {'User-Agent': thisua} r = requests.get(url, headers=headers, params=params) r.raise_for_status() r.encoding = r.apparent_encoding r.encoding = 'utf-8' # 不加此句出现乱码 return r.text
def parse_page(infolist, data): commentpat = ''time':'(.*?)'' lastpat = ''last':'(.*?)''
commentall = re.compile(commentpat, re.S).findall(data) next_cid = re.compile(lastpat).findall(data)[0]
infolist.append(commentall)
return next_cid
def print_comment_list(infolist): j = 0 for page in infolist: print('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): print(commentall[i] + '\n') j += 1
def save_to_txt(infolist, path): fw = open(path, 'w+', encoding='utf-8') j = 0 for page in infolist: #fw.write('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): fw.write(commentall[i] + '\n') j += 1 fw.close()
def main(): infolist = [] vid = '7225749902'; cid = '0'; page_num =3000 url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2' #print(url)
for i in range(page_num): params = {'orinum': '10', 'cursor': cid} html = get_html(url, params) cid = parse_page(infolist, html)
print_comment_list(infolist) save_to_txt(infolist, 'time.txt')
main()
二.数据处理部分
1.评论的时间戳转换为正常时间 time.py
# coding=gbk
import csv
import time
csvFile = open('data.csv','w',newline='',encoding='utf-8')
writer = csv.writer(csvFile)
csvRow = []
#print(csvRow)
f = open('time.txt','r',encoding='utf-8')
for line in f:
csvRow = int(line)
#print(csvRow)
timeArray = time.localtime(csvRow)
csvRow = time.strftime('%Y-%m-%d %H:%M:%S', timeArray)
print(csvRow)
csvRow = csvRow.split()
writer.writerow(csvRow)
f.close()
csvFile.close()
2.评论内容读入csv CD.py
# coding=gbkimport csvcsvFile = open('content.csv','w',newline='',encoding='utf-8')writer = csv.writer(csvFile)csvRow = []
f = open('content.txt','r',encoding='utf-8')for line in f: csvRow = line.split() writer.writerow(csvRow)
f.close()csvFile.close()
3.统计一天各个时间段内的评论数 py.py
# coding=gbk
import csv
from pyecharts import options as opts
from sympy.combinatorics import Subset
from wordcloud import WordCloud
with open('../Spiders/data.csv') as csvfile:
reader = csv.reader(csvfile)
data1 = [str(row[1])[0:2] for row in reader]
print(data1)
print(type(data1))
#先变成集合得到seq中的所有元素,避免重复遍历
set_seq = set(data1)
rst = []
for item in set_seq:
rst.append((item,data1.count(item))) #添加元素及出现个数
rst.sort()
print(type(rst))
print(rst)
with open('time2.csv', 'w+', newline='', encoding='utf-8') as f:
writer = csv.writer(f, delimiter=',')
for i in rst: # 对于每一行的,将这一行的每个元素分别写在对应的列中
writer.writerow(i)
with open('time2.csv') as csvfile:
reader = csv.reader(csvfile)
x = [str(row[0]) for row in reader]
print(x)
with open('time2.csv') as csvfile:
reader = csv.reader(csvfile)
y1 = [float(row[1]) for row in reader]
print(y1)
处理结果(评论时间,评论数)
4.统计最近评论数 py1.py
# coding=gbkimport csv
from pyecharts import options as optsfrom sympy.combinatorics import Subsetfrom wordcloud import WordCloud
with open('../Spiders/data.csv') as csvfile: reader = csv.reader(csvfile)
data1 = [str(row[0]) for row in reader] #print(data1)print(type(data1))
#先变成集合得到seq中的所有元素,避免重复遍历set_seq = set(data1)rst = []for item in set_seq: rst.append((item,data1.count(item))) #添加元素及出现个数rst.sort()print(type(rst))print(rst)
with open('time1.csv', 'w+', newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter=',') for i in rst: # 对于每一行的,将这一行的每个元素分别写在对应的列中 writer.writerow(i)
with open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x)with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader]
print(y1)
处理结果(评论时间,评论数)
三. 数据分析
数据分析方面:涉及到了词云图,条形,折线,饼图,后三者是对评论时间与主演占比的分析,然而腾讯的评论时间是以时间戳的形式显示,所以要进行转换,再去统计出现次数,最后,新加了对评论内容的情感分析。
1.制作词云图
wc.py
import numpy as np
import re
import jieba
from wordcloud import WordCloud
from matplotlib import pyplot as plt
from PIL import Image
# 上面的包自己安装,不会的就百度
f = open('../Spiders/content.txt', 'r', encoding='utf-8') # 这是数据源,也就是想生成词云的数据
txt = f.read() # 读取文件
f.close() # 关闭文件,其实用with就好,但是懒得改了
# 如果是文章的话,需要用到jieba分词,分完之后也可以自己处理下再生成词云
newtxt = re.sub('[A-Za-z0-9\!\%\[\]\,\。]', '', txt)
print(newtxt)
words = jieba.lcut(newtxt)
img = Image.open(r'wc.jpg') # 想要搞得形状
img_array = np.array(img)
# 相关配置,里面这个collocations配置可以避免重复
wordcloud = WordCloud(
background_color='white',
width=1080,
height=960,
font_path='../文悦新青年.otf',
max_words=150,
scale=10,#清晰度
max_font_size=100,
mask=img_array,
collocations=False).generate(newtxt)
plt.imshow(wordcloud)
plt.axis('off')
plt.show()
wordcloud.to_file('wc.png')
轮廓图:wc.jpg
词云图:result.png (注:这里要把英文字母过滤掉)
2.制作最近评论数条形图与折线图 DrawBar.py
# encoding: utf-8import csvimport pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.globals import ThemeType
class DrawBar(object):
'''绘制柱形图类''' def __init__(self): '''创建柱状图实例,并设置宽高和风格''' self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.LIGHT))
def add_x(self): '''为图形添加X轴数据''' with open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x)
self.bar.add_xaxis( xaxis_data=x,
)
def add_y(self): with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader]
print(y1)
'''为图形添加Y轴数据,可添加多条''' self.bar.add_yaxis( # 第一个Y轴数据 series_name='评论数', # Y轴数据名称 y_axis=y1, # Y轴数据 label_opts=opts.LabelOpts(is_show=True,color='black'), # 设置标签 bar_max_width='100px', # 设置柱子最大宽度 )
def set_global(self): '''设置图形的全局属性''' #self.bar(width=2000,height=1000) self.bar.set_global_opts( title_opts=opts.TitleOpts( # 设置标题 title='扫黑风暴近日评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35)
), tooltip_opts=opts.TooltipOpts( # 提示框配置项(鼠标移到图形上时显示的东西) is_show=True, # 是否显示提示框 trigger='axis', # 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线跟随鼠标移动,并显示提示信息) axis_pointer_type='cross' # 指示器类型(cross将会生成两条分别垂直于X轴和Y轴的虚线,不启用trigger才会显示完全) ), toolbox_opts=opts.ToolboxOpts(), # 工具箱配置项(什么都不填默认开启所有工具)
)
def draw(self): '''绘制图形'''
self.add_x() self.add_y() self.set_global() self.bar.render('../Html/DrawBar.html') # 将图绘制到 test.html 文件内,可在浏览器打开 def run(self): '''执行函数''' self.draw()
if __name__ == '__main__': app = DrawBar()
app.run()
效果图:DrawBar.html
3.制作每小时评论条形图与折线图 DrawBar2.py
# encoding: utf-8
# encoding: utf-8
import csv
import pyecharts.options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType
class DrawBar(object):
'''绘制柱形图类'''
def __init__(self):
'''创建柱状图实例,并设置宽高和风格'''
self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.MACARONS))
def add_x(self):
'''为图形添加X轴数据'''
str_name1 = '点'
with open('time2.csv') as csvfile:
reader = csv.reader(csvfile)
x = [str(row[0] + str_name1) for row in reader]
print(x)
self.bar.add_xaxis(
xaxis_data=x
)
def add_y(self):
with open('time2.csv') as csvfile:
reader = csv.reader(csvfile)
y1 = [int(row[1]) for row in reader]
print(y1)
'''为图形添加Y轴数据,可添加多条'''
self.bar.add_yaxis( # 第一个Y轴数据
series_name='评论数', # Y轴数据名称
y_axis=y1, # Y轴数据
label_opts=opts.LabelOpts(is_show=False), # 设置标签
bar_max_width='50px', # 设置柱子最大宽度
)
def set_global(self):
'''设置图形的全局属性'''
#self.bar(width=2000,height=1000)
self.bar.set_global_opts(
title_opts=opts.TitleOpts( # 设置标题
title='扫黑风暴各时间段评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35)
),
tooltip_opts=opts.TooltipOpts( # 提示框配置项(鼠标移到图形上时显示的东西)
is_show=True, # 是否显示提示框
trigger='axis', # 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线跟随鼠标移动,并显示提示信息)
axis_pointer_type='cross' # 指示器类型(cross将会生成两条分别垂直于X轴和Y轴的虚线,不启用trigger才会显示完全)
),
toolbox_opts=opts.ToolboxOpts(), # 工具箱配置项(什么都不填默认开启所有工具)
)
def draw(self):
'''绘制图形'''
self.add_x()
self.add_y()
self.set_global()
self.bar.render('../Html/DrawBar2.html') # 将图绘制到 test.html 文件内,可在浏览器打开
def run(self):
'''执行函数'''
self.draw()
if __name__ == '__main__':
app = DrawBar()
app.run()
效果图:DrawBar2.html
4.制作最近评论数饼图 pie_pyecharts.py
import csv
from pyecharts import options as optsfrom pyecharts.charts import Piefrom random import randint
from pyecharts.globals import ThemeType
with open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x)with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader]
print(y1)
num = y1lab = x( Pie(init_opts=opts.InitOpts(width='1700px',height='450px',theme=ThemeType.LIGHT))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title='扫黑风暴近日评论统计', title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(
pos_top='10%', pos_left='1%',# 图例位置调整 ),) .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[845, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[1380, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图).render('../Html/pie_pyecharts.html')
效果图
5.制作每小时评论饼图 pie_pyecharts2.py
import csv
from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint
from pyecharts.globals import ThemeType
str_name1 = '点'
with open('time2.csv') as csvfile:
reader = csv.reader(csvfile)
x = [str(row[0]+str_name1) for row in reader]
print(x)
with open('time2.csv') as csvfile:
reader = csv.reader(csvfile)
y1 = [int(row[1]) for row in reader]
print(y1)
num = y1
lab = x
(
Pie(init_opts=opts.InitOpts(width='1650px',height='500px',theme=ThemeType.LIGHT,))#默认900,600
.set_global_opts(
title_opts=opts.TitleOpts(title='扫黑风暴每小时评论统计'
,title_textstyle_opts=opts.TextStyleOpts(font_size=27)),
legend_opts=opts.LegendOpts(
pos_top='8%', pos_left='4%',# 图例位置调整
),
)
.add(series_name='',center=[250, 300], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图
.add(series_name='',center=[810, 300],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图
.add(series_name='', center=[1350, 300],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图
).render('../Html/pie_pyecharts2.html')
效果图
6.制作观看时间区间评论统计饼图 pie_pyecharts3.py
# coding=gbkimport csv
from pyecharts import options as optsfrom pyecharts.globals import ThemeTypefrom sympy.combinatorics import Subsetfrom wordcloud import WordCloud
with open('../Spiders/data.csv') as csvfile: reader = csv.reader(csvfile)
data2 = [int(row[1].strip('')[0:2]) for row in reader]
#print(data2)print(type(data2))
#先变成集合得到seq中的所有元素,避免重复遍历set_seq = set(data2)list = []for item in set_seq: list.append((item,data2.count(item))) #添加元素及出现个数list.sort()print(type(list))#print(list)
with open('time2.csv', 'w+', newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter=',') for i in list: # 对于每一行的,将这一行的每个元素分别写在对应的列中 writer.writerow(i)
n = 4 #分成n组m = int(len(list)/n)list2 = []for i in range(0, len(list), m): list2.append(list[i:i+m])
print('凌晨 : ',list2[0])print('上午 : ',list2[1])print('下午 : ',list2[2])print('晚上 : ',list2[3])
with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [int(row[1]) for row in reader]
print(y1)
n =6groups = [y1[i:i + n] for i in range(0, len(y1), n)]
print(groups)
x=['凌晨','上午','下午','晚上']y1=[]for y1 in groups: num_sum = 0 for groups in y1: num_sum += groups
print(x)print(y1)
import csv
from pyecharts import options as optsfrom pyecharts.charts import Piefrom random import randint
str_name1 = '点'
num = y1lab = x( Pie(init_opts=opts.InitOpts(width='1500px',height='450px',theme=ThemeType.LIGHT))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title='扫黑风暴观看时间区间评论统计' , title_textstyle_opts=opts.TextStyleOpts(font_size=30)), legend_opts=opts.LegendOpts(
pos_top='8%', # 图例位置调整 ), ) .add(series_name='',center=[260, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[1230, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[750, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图).render('../Html/pie_pyecharts3.html')
效果图
7.制作扫黑风暴主演提及占比饼图 pie_pyecharts4.py
import csv
import numpy as np
import re
import jieba
from matplotlib.pyplot import scatter
from wordcloud import WordCloud
from matplotlib import pyplot as plt
from PIL import Image
# 上面的包自己安装,不会的就百度
f = open('../Spiders/content.txt', 'r', encoding='utf-8') # 这是数据源,也就是想生成词云的数据
words = f.read() # 读取文件
f.close() # 关闭文件,其实用with就好,但是懒得改了
name=['孙红雷','张艺兴','刘奕君','吴越','王志飞','刘之冰','江疏影']
print(name)
count=[float(words.count('孙红雷')),
float(words.count('艺兴')),
float(words.count('刘奕君')),
float(words.count('吴越')),
float(words.count('王志飞')),
float(words.count('刘之冰')),
float(words.count('江疏影'))]
print(count)
import csv
from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint
from pyecharts.globals import ThemeType
num = count
lab = name
(
Pie(init_opts=opts.InitOpts(width='1650px',height='450px',theme=ThemeType.LIGHT))#默认900,600
.set_global_opts(
title_opts=opts.TitleOpts(title='扫黑风暴主演提及占比',
title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(
pos_top='3%', pos_left='33%',# 图例位置调整
),)
.add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图
.add(series_name='',center=[800, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图
.add(series_name='', center=[1300, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图
).render('../Html/pie_pyecharts4.html')
效果图
8.评论内容情感分析 SnowNLP.py
import numpy as npfrom snownlp import SnowNLPimport matplotlib.pyplot as plt
f = open('../Spiders/content.txt', 'r', encoding='UTF-8')list = f.readlines()sentimentslist = []for i in list: s = SnowNLP(i)
print(s.sentiments) sentimentslist.append(s.sentiments)plt.hist(sentimentslist, bins=np.arange(0, 1, 0.01), facecolor='g')plt.xlabel('Sentiments Probability')plt.ylabel('Quantity')plt.title('Analysis of Sentiments')plt.show()
效果图(情感各分数段出现频率)
SnowNLP情感分析是基于情感词典实现的,其简单的将文本分为两类,积极和消极,返回值为情绪的概率,也就是情感评分在[0,1]之间,越接近1,情感表现越积极,越接近0,情感表现越消极。