模型 | ''一线三等角模型''引发的思考(优选)
【导入】“一线三直角”(K字型)
通过动图看解析:
如果直线MN绕着点C旋转一周(0°<α<360°),我们可以得到以下六种情况:
【重点】“一线三等角”模型
原题再现:
[提炼分类一]基本模型:分为全等和相似两类,
下图以锐角60°,直角90°,钝角120°为例;
全等时△ABC分别为:等边三角形,等腰直角三角形,等腰三角形;
△ABE与△CAD全等
△ABE与△CAD相似
[提炼分类二]还可分为同侧或者异侧,
下面以全等情况为例,△ABD≌△CAE,
展示异侧以锐角60°,直角90°,钝角120°为例的图形。
【解析】以正方形为例进行探究
方法一:截长补短,证明全等
方法二:“一线三直角”,转化三角形的对应边相等,再套入模型
方法三:勾股定理推出AM与EN的关系,再套入模型
方法四:辅助圆,证明等腰直角三角形
方法五:建立平面直角坐标系,借助“斜率负倒数”
方法六:折叠-对称的角度1
方法七:折叠-对称的角度2
方法八:旋转的角度,点A为旋转中心1
方法九:旋转的角度,点A为旋转中心2
方法十:旋转的角度,点M为旋转中心
方法十一和十二:旋转的角度,点D为旋转中心
方法十三和十四:旋转的角度,点B为旋转中心
方法十五和十六:旋转的角度,点M为旋转中心
【课后练习】这道例题也是八年级我们常见的证明题。
文章来源:做中学学中做;如存在文章/图片/音视频使用不当的情况,或来源标注有异议等,请联系编辑微信:ABC-shuxue第一时间处理。
赞 (0)