Python编程语言学习:sklearn.manifold的TSNE函数的简介、使用方法、代码实现之详细攻略

Python编程语言学习:sklearn.manifold的TSNE函数的简介、使用方法、代码实现之详细攻略Manifold简介Manifold learning is an approach to non-linear dimensionality reduction. Algorithms for this task are based on the idea that the dimensionality of many data sets is only artificially high.Manifold是一种非线性降维的方法。这个任务的算法是基于这样一种想法,即许多数据集的维数只是人为地偏高。High-dimensional datasets can be very difficult to visualize. While data in two or three dimensions can be plotted to show the inherent structure of the data, equivalent high-dimensional plots are much less intuitive. To aid visualization of the structure of a dataset, the dimension must be reduced in some way.The simplest way to accomplish this dimensionality reduction is by taking a random projection of the data. Though this allows some degree of visualization of the data structure, the randomness of the choice leaves much to be desired. In a random projection, it is likely that the more interesting structure within the data will be lost.To address this concern, a number of supervised and unsupervised linear dimensionality reduction frameworks have been designed, such as Principal Component Analysis (PCA), Independent Component Analysis, Linear Discriminant Analysis, and others. These algorithms define specific rubrics to choose an “interesting” linear projection of the data. These methods can be powerful, but often miss important non-linear structure in the data.高维数据集很难可视化。虽然可以绘制二维或三维的数据来显示数据的固有结构,但等效的高维图就不那么直观了。为了帮助可视化数据集的结构,必须以某种方式减少维数。完成这种维数减少的最简单方法是对数据进行随机投影。尽管这允许一定程度的数据结构可视化,但选择的随机性仍有很多不足之处。在随机投影中,数据中更有趣的结构很可能会丢失。为了解决这一问题,设计了许多监督和非监督线性降维框架,如主成分分析(PCA),独立成分分析,线性判别分析,以及其他。这些算法定义了选择数据的“有趣的”线性投影的特定规则。这些方法可能很强大,但往往忽略了数据中重要的非线性结构。Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-linear structure in data. Though supervised variants exist, the typical manifold learning problem is unsupervised: it learns the high-dimensional structure of the data from the data itself, without the use of predetermined classifications.Manifold可以被认为是一种推广线性框架的尝试,如PCA,以敏感的非线性数据结构。虽然有监督变量存在,但典型的Manifold问题是非监督的:它从数据本身学习数据的高维结构,而不使用预定的分类。TSNE简介—数据降维且可视化t-distributed Stochastic Neighbor Embedding(t-SNE),即t-分布随机邻居嵌入。t-SNE是一个可视化高维数据的工具。它将数据点之间的相似性转化为联合概率,并试图最小化低维嵌入和高维数据联合概率之间的Kullback-Leibler差异。t-SNE有一个非凸的代价函数,即通过不同的初始化,我们可以得到不同的结果。强烈建议使用另一种降维方法(如密集数据的PCA或稀疏数据的集群svd)来减少维数到一个合理的数量(如50),如果特征的数量非常高。这将抑制一些噪声,加快样本间成对距离的计算。t-SNE是目前来说效果最好的数据降维与可视化方法,但是它的缺点也很明显,比如:占内存大,运行时间长。但是,当我们想要对高维数据进行分类,又不清楚这个数据集有没有很好的可分性(即同类之间间隔小,异类之间间隔大),可以通过t-SNE投影到2维或者3维的空间中观察一下。如果在低维空间中具有可分性,则数据是可分的;如果在高维空间中不具有可分性,可能是数据不可分,也可能仅仅是因为不能投影到低维空间。t-SNE(TSNE)的原理是将数据点之间的相似度转换为概率。原始空间中的相似度由高斯联合概率表示,嵌入空间的相似度由“学生t分布”表示。参考文章:https://www.deeplearn.me/2137.htmlTSNE使用方法from sklearn.manifold import TSNEvisual_model = TSNE(metric='precomputed', perplexity=10)  # t分布随机邻接嵌入visual = visual_model.fit_transform(dis) TSNE代码实现class TSNE Found at: sklearn.manifold._t_sneclass TSNE(BaseEstimator): """t-distributed Stochastic Neighbor Embedding. t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results. It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples. For more tips see Laurens van der Maaten's FAQ [2]. Read more in the :ref:`User Guide <t_sne>`. Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. Different values can result in significanlty different results. early_exaggeration : float, optional (default: 12.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 200.0) The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 250. n_iter_without_progress : int, optional (default: 300) Maximum number of iterations without progress before we abort the optimization, used after 250 initial iterations with early exaggeration. Note that progress is only checked every 50 iterations so this value is rounded to the next multiple of 50. .. versionadded:: 0.17 parameter *n_iter_without_progress* to control stopping criteria. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be stopped. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string or numpy array, optional (default: "random") Initialization of embedding. Possible options are 'random', 'pca', and a numpy array of shape (n_samples, n_components). PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int, RandomState instance, default=None Determines the random number generator. Pass an int for reproducible results across multiple function calls. Note that different initializations might result in different local minima of the cost function. See :term: `Glossary <random_state>`. method : string (default: 'barnes_hut') By default the gradient calculation algorithm uses Barnes-Hut approximation running in O(NlogN) time. method='exact' will run on the slower, but exact, algorithm in O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to be better than 3%. However, the exact method cannot scale to millions of examples. .. versionadded:: 0.17 Approximate optimization *method* via the Barnes-Hut. angle : float (default: 0.5) Only used if method='barnes_hut' This is the trade-off between speed and accuracy for Barnes-Hut T- SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. n_jobs : int or None, optional (default=None) The number of parallel jobs to run for neighbors search. This parameter has no impact when ``metric="precomputed"`` or (``metric="euclidean"`` and ``method="exact"``). ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. .. versionadded:: 0.22 Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kl_divergence_ : float Kullback-Leibler divergence after optimization. n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> from sklearn.manifold import TSNE >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> X_embedded = TSNE(n_components=2).fit_transform(X) >>> X_embedded.shape (4, 2) References ---------- [1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High- Dimensional Data Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. [2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding https://lvdmaaten.github.io/tsne/ [3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research 15(Oct):3221-3245, 2014. https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf """ # Control the number of exploration iterations with early_exaggeration on _EXPLORATION_N_ITER = 250 # Control the number of iterations between progress checks _N_ITER_CHECK = 50 @_deprecate_positional_args def __init__(self, n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate=200.0, n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-7, metric="euclidean", init="random", verbose=0, random_state=None, method='barnes_hut', angle=0.5, n_jobs=None): self.n_components = n_components self.perplexity = perplexity self.early_exaggeration = early_exaggeration self.learning_rate = learning_rate self.n_iter = n_iter self.n_iter_without_progress = n_iter_without_progress self.min_grad_norm = min_grad_norm self.metric = metric self.init = init self.verbose = verbose self.random_state = random_state self.method = method self.angle = angle self.n_jobs = n_jobs def _fit(self, X, skip_num_points=0): """Private function to fit the model using X as training data.""" if self.method not in ['barnes_hut', 'exact']: raise ValueError("'method' must be 'barnes_hut' or 'exact'") if self.angle < 0.0 or self.angle > 1.0: raise ValueError("'angle' must be between 0.0 - 1.0") if self.method == 'barnes_hut': X = self._validate_data(X, accept_sparse=['csr'], ensure_min_samples=2, dtype=[np.float32, np.float64]) else: X = self._validate_data(X, accept_sparse=['csr', 'csc', 'coo'], dtype=[np.float32, np.float64]) if self.metric == "precomputed": if isinstance(self.init, str) and self.init == 'pca': raise ValueError("The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".") if X.shape[0] != X.shape[1]: raise ValueError("X should be a square distance matrix") check_non_negative(X, "TSNE.fit(). With metric='precomputed', X " "should contain positive distances.") if self.method == "exact" and issparse(X): raise TypeError('TSNE with method="exact" does not accept sparse ' 'precomputed distance matrix. Use method=" barnes_hut" ' 'or provide the dense distance matrix.') if self.method == 'barnes_hut' and self.n_components > 3: raise ValueError("'n_components' should be inferior to 4 for the " "barnes_hut algorithm as it relies on " "quad-tree or oct-tree.") random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError( "early_exaggeration must be at least 1, but is {}".format(self. early_exaggeration)) if self.n_iter < 250: raise ValueError("n_iter should be at least 250") n_samples = X.shape[0] neighbors_nn = None if self.method == "exact": # Retrieve the distance matrix, either using the precomputed one or # computing it. if self.metric == "precomputed": distances = X else: if self.verbose: print("[t-SNE] Computing pairwise distances...") if self.metric == "euclidean": distances = pairwise_distances(X, metric=self.metric, squared=True) else: distances = pairwise_distances(X, metric=self.metric, n_jobs=self.n_jobs) if np.any(distances < 0): raise ValueError("All distances should be positive, the " "metric given is not correct") # compute the joint probability distribution for the input space P = _joint_probabilities(distances, self.perplexity, self.verbose) assert np.all(np.isfinite(P)), "All probabilities should be finite" assert np.all(P >= 0), "All probabilities should be non- negative" assert np.all(P <= 1), ("All probabilities should be less " "or then equal to one") else: n_neighbors = min(n_samples - 1, int(3. * self.perplexity + 1)) if self.verbose: print("[t-SNE] Computing {} nearest neighbors...".format (n_neighbors)) # Find the nearest neighbors for every point knn = NearestNeighbors(algorithm='auto', n_jobs=self. n_jobs, n_neighbors=n_neighbors, metric=self.metric) t0 = time() knn.fit(X) duration = time() - t0 if self.verbose: print("[t-SNE] Indexed {} samples in {:.3f}s...".format (n_samples, duration)) t0 = time() distances_nn = knn.kneighbors_graph(mode='distance') duration = time() - t0 if self.verbose: print("[t-SNE] Computed neighbors for {} samples " "in {:.3f}s...". format(n_samples, duration)) # Free the memory used by the ball_tree del knn if self.metric == "euclidean": # knn return the euclidean distance but we need it squared # to be consistent with the 'exact' method. Note that the # the method was derived using the euclidean method as in the # input space. Not sure of the implication of using a different # metric. distances_nn.data **= 2 # compute the joint probability distribution for the input space P = _joint_probabilities_nn(distances_nn, self.perplexity, self. verbose) # Compute the number of nearest neighbors to find. # LvdM uses 3 * perplexity as the number of neighbors. # In the event that we have very small # of points # set the neighbors to n - 1. if isinstance(self.init, np.ndarray): X_embedded = self.init elif self.init == 'pca': pca = PCA(n_components=self.n_components, svd_solver='randomized', random_state=random_state) X_embedded = pca.fit_transform(X).astype(np.float32, copy=False) elif self.init == 'random': # The embedding is initialized with iid samples from Gaussians with # standard deviation 1e-4. X_embedded = 1e-4 * random_state.randn(n_samples, self. n_components).astype(np.float32) else: raise ValueError("'init' must be 'pca', 'random', or " "a numpy array") # Degrees of freedom of the Student's t-distribution. The suggestion # degrees_of_freedom = n_components - 1 comes from # "Learning a Parametric Embedding by Preserving Local Structure" # Laurens van der Maaten, 2009. degrees_of_freedom = max(self.n_components - 1, 1) return self._tsne(P, degrees_of_freedom, n_samples, X_embedded=X_embedded, neighbors=neighbors_nn, skip_num_points=skip_num_points) def _tsne(self, P, degrees_of_freedom, n_samples, X_embedded, neighbors=None, skip_num_points=0): """Runs t-SNE.""" # t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P # and the Student's t-distributions Q. The optimization algorithm that # we use is batch gradient descent with two stages: # * initial optimization with early exaggeration and momentum at 0.5 # * final optimization with momentum at 0.8 params = X_embedded.ravel() opt_args = { "it":0, "n_iter_check":self._N_ITER_CHECK, "min_grad_norm":self.min_grad_norm, "learning_rate":self.learning_rate, "verbose":self.verbose, "kwargs":dict(skip_num_points=skip_num_points), "args":[P, degrees_of_freedom, n_samples, self. n_components], "n_iter_without_progress":self._EXPLORATION_N_ITER, "n_iter":self._EXPLORATION_N_ITER, "momentum":0.5} if self.method == 'barnes_hut': obj_func = _kl_divergence_bh opt_args['kwargs']['angle'] = self.angle # Repeat verbose argument for _kl_divergence_bh opt_args['kwargs']['verbose'] = self.verbose # Get the number of threads for gradient computation here to # avoid recomputing it at each iteration. opt_args['kwargs']['num_threads'] = _openmp_effective_n_threads() else: obj_func = _kl_divergence # Learning schedule (part 1): do 250 iteration with lower momentum but # higher learning rate controlled via the early exaggeration parameter P *= self.early_exaggeration params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args) if self.verbose: print("[t-SNE] KL divergence after %d iterations with early " "exaggeration: %f" % (it + 1, kl_divergence)) # Learning schedule (part 2): disable early exaggeration and finish # optimization with a higher momentum at 0.8 P /= self.early_exaggeration remaining = self.n_iter - self._EXPLORATION_N_ITER if it < self._EXPLORATION_N_ITER or remaining > 0: opt_args['n_iter'] = self.n_iter opt_args['it'] = it + 1 opt_args['momentum'] = 0.8 opt_args['n_iter_without_progress'] = self. n_iter_without_progress params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args) # Save the final number of iterations self.n_iter_ = it if self.verbose: print("[t-SNE] KL divergence after %d iterations: %f" % (it + 1, kl_divergence)) X_embedded = params.reshape(n_samples, self.n_components) self.kl_divergence_ = kl_divergence return X_embedded def fit_transform(self, X, y=None): """Fit X into an embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. If the method is 'barnes_hut' and the metric is 'precomputed', X may be a precomputed sparse graph. y : Ignored Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ embedding = self._fit(X) self.embedding_ = embedding return self.embedding_ def fit(self, X, y=None): """Fit X into an embedded space. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. If the method is 'barnes_hut' and the metric is 'precomputed', X may be a precomputed sparse graph. y : Ignored """ self.fit_transform(X) return self

(0)

相关推荐