y=(2x^3+208x^2)/(x-1)^2 单调性等性质
※.函数的定义域
∵x-1≠0,
∴x≠1,即函数的定义域为:
(-∞,1)∪(1,+∞)
※.函数的单调性
∵y=(2x^3+208x^2)/(x-1)^2
∴dy/dx
=[(6x^2+416x)(x-1)^2-2(x-1)(2x^3+208x^2)]/(x-1)^4
=[(6x^2+416x)(x-1)-2(2x^3+208x^2)]/(x-1)^3
=[(6x^2+416x)(x-1)-2(2x^3+208x^2)]/(x-1)^3
=x(2x^2-6x-416)/(x-1)^3
=2(x^2-3x-208)/(x-1)^3
令dy/dx=0,则x1=0或x^2-3x-208=0.
当x^2-3x-208=0时,有:
(x+13)(x-16)=0,即:
x2=-13.x3=16.
(1).当x∈(-∞,-13]∪[0,1)∪(1,16]时,
dy/dx<0,此时函数y为减函数;
(2).当x∈(-13,0)∪(16,+∞)时,
dy/dx>0,此时函数y为增函数。
※.函数的凸凹性
∵dy/dx=(2x^3-6x^2-416x)/(x-1)^3
∴d^2y/dx^2
=[(6x^2-12x-416)(x-1)^3-3(2x^3-6x^2-416x)(x-1)^2]/(x-1)^6
=[(6x^2-12x-416)(x-1)-3(2x^3-6x^2-416x)]/(x-1)^4
=(844x+416)/(x-1)^4
=4(211x+2)/(x-1)^4
令d^2y/dx^2=0,则:
则:211x+2=0,即x=-104/211.
(1).当x∈(-∞,-104/211)时,d^2y/dx^2<0,
此时函数y为凸函数;
(2).当x∈(-104/211,1)∪(1,+∞)时,
d^2y/dx^2>0,此时函数y为凹函数。
※.函数的极限
lim(x→-∞)(2x^3+208x^2)/(x-1)^2=-∞
lim(x→1)(2x^3+208x^2)/(x-1)^2=+∞
lim(x→+∞)(2x^3+208x^2)/(x-1)^2=+∞