压轴题打卡31:几何运动有关的二次函数综合问题 2024-05-04 13:33:30 孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=ax2(a<0)的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:(1)若测得OA=OB=2√2(如图1),求a的值;(2)对同一条抛物线,孔明将三角板绕点O旋转到如图2所示位置时,过B作BF⊥x轴于点F,测得OF=1,写出此时点B的坐标,并求点A的横坐标 ;(3)对该抛物线,孔明将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标.参考答案:考点分析:二次函数综合题;代数几何综合题;压轴题。题干分析:(1)先求出B点坐标,代入抛物线y=ax2(a<0)得a的值;(2)过点A作AE⊥x轴于点E,可证△AEO∽△OFB,得出AE=2OE,可得方程点A的横坐标.(3)设A(﹣m,--m2/2)(m>0),B(n,-n2/2)(n>0),易知△AEO∽△OFB,根据相似三角形的性质可知交点A、B的连线段总经过一个固定的点(0,﹣2).解题反思:本题着重考查了抛物线的对称性和相似三角形的判定和性质,第(3)问求出mn=4是解题的关键,综合性较强,有一定的难度. 赞 (0) 相关推荐 2020年中考模拟考试数学试题 一.选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种零件的直径尺寸在图纸上是 (单位:mm),它表示这种零件 ... 让你生无可恋的中考压轴大题——二次函数,真的那么难吗? | 2020江苏中考试卷解析终结篇 差一点 我们就擦肩而过了 有趣 有用 有态度 每个城市的中考都会考察二次函数,之前的七个城市将二次函数放在最后一题考察,体现了二次函数的重要性.新的考试方向其实是在淡化二次函数的难度,强调回归数学的本 ... 中考数学压轴题分析:几何法解决二次函数含参问题 二次函数有关的题目常常需要复杂的运算.本题算是一股清流,利用相似三角形等几何的性质得到线段的数量关系进行求解.本文内容选自2020年镇江中考数学压轴题,大家可以欣赏下. [中考真题] (2020·镇江 ... 压轴题打卡105:相似有关的二次函数综合问题 把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B.C(E).F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2 ... 压轴题打卡139:四边形有关的二次函数综合题 抛物线y=x2/3+bx+c经过点A(﹣4,0).B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P.Q两点,其中点P位于第二象限,点Q在y轴的右侧. (1) ... 压轴题打卡47:几何变换有关的二次函数综合问题 在如图的平面直角坐标系xOy中,抛物线y=2x2+bx+c经过点A(0,﹣2),B(2,﹣2). (1)该抛物线的对称轴为直线 ,若点(﹣3,m)与点(3,n)在该抛物线上, 则m n(填& ... 压轴题打卡30:圆有关的二次函数综合问题 已知,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T. (1)如图(1),当C点运动到O点时,求PT的长: (2)如图(2),当C点 ... 压轴题打卡26:几何变换有关的二次函数综合问题 将抛物沿c1:y=- √3x2+√3沿x轴翻折,得拋物线c2,如图所示. (1)请直接写出拋物线c2的表达式. (2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从 ... 压轴题打卡130:平行四边形有关的二次函数存在型问题 已知抛物线y=﹣x²/2+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0). (1)求抛物线的解析式: (2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的 ... 压轴题打卡137:相似有关的函数综合题 已知在平面直角坐标系中,抛物线y=﹣x²/2+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点, (1)求抛物线的表达式: (2)如果点P,Q在抛物线上(P点在对称轴左边) ... 压轴题打卡54:正方形有关的几何变换综合问题分析 在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α. (Ⅰ)如图①,当α=90°时 ... 压轴题打卡32:动态有关的二次函数存在型综合问题 如图,抛物线y=ax2+bx经过点A(﹣4,0).B(﹣2,2),连接OB.AB, (1)求该抛物线的解析式. (2)求证:△OAB是等腰直角三角形. (3)将△OAB绕点O按逆时针方向旋转135°, ...