【新年重磅】全球数据中心能耗评估再校准

更多干货等你发现!

全球数据中心能耗评估再校准-1

Recalibrating global data center energy-use  estimates - 1

得益于开明的政策,短期内能效持续提高,能耗增长放缓。

Growth in energy use has slowed owing to efficiency gains that smart policies can help maintain in the near term

数据中心代表着日益数字化世界的信息支柱。对数据中心服务的需求快速增长,诸如人工智能、智能互联能源系统、分布式制造系统以及无人驾驶汽车等数据密集型技术有望进一步增加需求。由于数据中心属于能源密集型业务,其耗电量估计约占全球用电量的1%,这些趋势对全球能源需求带来明显的影响,必须进行严格分析。一些经常被引用但过于简单的分析声称,过去十年来,全球数据中心的能耗量已翻了一番,并且在未来十年内还将增长3至4倍。这样的判断助长了一种传统的观点,即数据中心服务的需求快速增长,因此全球能耗也必然迅猛递增。但是,基于近期服务需求增长指标进行的此类判断,却忽视了同期能效提高所带来的巨大抵消作用(见图1)。本文中,我们综合了近期不同来源的新数据,认为全球数据中心的能耗量会有更平缓的增长(见图2)。这为政策决策方和能源分析师提供了对全球数据中心能耗、驱动因素和近期能效潜力的重新校准的理解。

Data centers represent the information backbone of an increasingly digitalized world. Demand for their services has been rising rapidly, and data-intensive technologies such as artificial intelligence, smart and connected energy systems, distributed manufacturing systems, and autonomous vehicles promise to increase demand further. Given that data centers are energy-intensive enterprises, estimated to account for around 1% of worldwide electricity use, these trends have clear implications for global energy demand and must be analyzed rigorously. Several oft-cited yet simplistic analyses claim that the energy used by the world’s data centers has doubled over the past decade and that their energy use will triple or even quadruple within the next decade. Such estimates contribute to a conventional wisdom that as demand for data center services rises rapidly, so too must their global energy use. But such extrapolations based on recent service demand growth indicators overlook strong countervailing energy efficiency trends that have occurred in parallel (see the first figure). Here, we integrate new data from different sources that have emerged recently and suggest more modest growth in global data center energy use (see the second figure). This provides policy-makers and energy analysts a recalibrated understanding of global data center energy use, its drivers, and near-term efficiency potential.

要评估数据中心不断增长的需求带来的影响,就需要对全球数据中心能耗的规模和驱动因素有深入的理解,而这已经使许多决策者和能源分析师望而却步。造成这一盲点的原因,是缺乏有关数据中心类型、地理位置、IT设备及其能效趋势“自下而上”的历史信息。这也导致了关于全球数据中心能耗的文献零散且经常相互矛盾。

Assessing implications of growing demand for data centers requires robust understanding of the scale and drivers of global data center energy use that has eluded many policy-makers and energy analysts. The reason for this blind spot is a historical lack of “bottom-up” information on data center types and locations, their information technology (IT) equipment, and their energy efficiency trends. This has led to a sporadic and often contradictory literature on global data center energy use.

要了解数据中心能耗的方向,需要考虑服务需求增长因素以及各类设备、能效和市场结构因素(见图1)。自下而上的分析往往能最好地反映这些广泛因素,生成最可信的历史和近期能耗评估。尽管最近进行了一些全国性研究,但最近一次完全可复现的、自下而上的全球数据中心能耗评估值的出现还是在近十年前。这些评估表明,全球数据中心的能耗已经从2005年的153TWh增长到2010年的203 - 273TWh,总计占当年全球用电量的1.1 - 1.5%。

Understanding where data center energy use is heading requires considering service demand growth factors alongside myriad equipment, energy efficiency, and market structure factors (see the first figure). Bottom-up analyses tend to best reflect this broad range of factors, generating the most credible historical and near-term energy-use estimates (7). Despite several recent national studies (8), the latest fully replicable bottom-up estimates of global data center energy use appeared nearly a decade ago. These estimates suggested that the world-wide energy use of data centers had grown from 153 terawatt-hours (TWh) in 2005 to between 203 and 273 TWh by 2010, totaling 1.1 to 1.5% of global electricity use (9).

随着对数据中心需求的增加,IT设备和相应冷却系统的能效改善可使能耗得到控制

As demand for data centers rises, energy efficiency improvements to the IT devices and cooling systems they house can keep energy use in check

然而,自2010年以来,数据中心格局发生了大幅变化(见图1)。至2018年,全球数据中心工作负载和计算实例增加了6倍多,数据中心IP流量增加了10倍以上。数据中心的存储容量也迅速增长,同期估计增加了25倍。分析人员中存在一种倾向,即使用这种服务需求趋势,自下而上地简单估算出能耗值,从而导致对当前和未来的全球数据中心能耗情况做出不可靠的预测。例如,他们可以根据服务需求指标的增长率(例如,2010年至2020年全球IP流量的增长),根据自下而上估算的历史数据(例如,2010年数据中心的总能耗)类比估算出未来能耗值(例如,2020年数据中心的能耗总量)。

Since 2010, however, the data center landscape has changed dramatically (see the first figure). By 2018, global data center workloads and compute instances had increased more than sixfold, whereas data center internet protocol (IP) traffic had increased by more than 10-fold (1). Data center storage capacity has also grown rapidly, increasing by an estimated factor of 25 over the same time period (1, 8 ). There has been a tendency among analysts to use such service demand trends to simply extrapolate earlier bottom-up energy values, leading to unreliable predictions of current and future global data center energy use (3–5). They might, for example, scale up previous bottom-up values (e.g., total data center energy use in 2010) on the basis of the growth rate of a service demand indicator (e.g., growth in global IP traffic from 2010 to 2020) to arrive at an estimate of future energy use (e.g., total data center energy use in 2020).

Happy New Year

中文翻译:何海

原文出处:POLICY FORUM【Recalibrating global data center energy-use  estimates】

REFERENCES AND NOTES  参考文献

1.  Cisco, “Cisco Global Cloud Index: Forecast and methodology, 2016–2021 white paper” (Cisco, document 1513879861264127 , 2018).

2.  International Energy Agency (IEA), Digitalization & Energy(IEA, 2017).

3.  L. Belkhir, A. Elmeligi, J. Clean. Prod.177, 448 (2018).

4.  A.S.G. Andrae, T. Edler, Challenges6, 117 (2015).

5.  T . Bawdy, “Global warming: Data centres to consume three times as much energy in next decade, experts warn, ” The Independent, 23 January 2016.

6.  N. Jones, Nature561, 163 (2018).

7.  E. Masanet, R. E. Brown, A. Shehabi, J. G. Koomey,

B. Nordman, Proc. IEEE99, 1440 (2011).

8.  A. Shehabi et al., “United States data center energy usage

report” (Lawrence Berkeley National Laboratory, LBNL-

1005775, 2016).

9.  J. G. Koomey, “Growth in data center electricity use 2005

to 2010” (Analytics Press for the New Y ork Times, 2011).

10.  B. Wagner, “Intergenerational energy efficiency of Dell

EMC PowerEdge servers” (Dell, DellEMC white paper,

2018).

11.  A. Shehabi, S. J. Smith, E. Masanet, J. Koomey, Environ. Res.

Lett.13, 124030 (2018).

12.  IEA, “T racking clean energy progress” (IEA, 2019);

www.iea.org/tcep/.

13.  H. Fuchs et al., Energy Effic.  10.1007/s12053-019-09809-8  (2019).

14.  M. Avgerinou, P. Bertoldi, L. Castellazzi, Energies10, 1470 (2017).

15.  E. Masanet, A. Shehabi, J. G. Koomey, Nat. Clim. Chang.3, 627 (2013).

(0)

相关推荐