每日考点 | 传统媒体如何应对“人工智能”?
核心概念辨析
一、“人工智能”的定义(注意名词解释)
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能技术将使新闻生产更加高效便捷,受众行为分析更加精准,媒体传播效果更加优化,它对新闻的内容生产、议题设置、运作方式等带来革命性的影响。(比较经典、学术的一段话,记住!)
二、人工智能带来全新的新闻生产
2015年9月,腾讯财经推出了自动化新闻写作机器人“Dreamwriter”,用时一分钟写出了第一篇报道;11月,新华社写稿机器人“快笔小新”正式上岗,可以写体育赛事中英文稿件和财经信息稿;2016年3月,韩国写稿机器人上岗,仅0.3秒就写出一篇股市行情的新闻稿。(简单记住这几个例子,论述题 中可援引)
计算机自动生成的机器人新闻,尽管在国内尚属新鲜事,但是国外几年前就已成为现实,机器人早已开始协助写稿、编辑、校对等。路透社、美联社、《纽约时报》《洛杉矶时报》、雅虎、赫芬顿邮报等传统媒体和互联网公司都已纷纷采用机器人生产新闻。
随着人工智能技术的逐渐成熟,机器人的计算能力和学习能力不断提升,传统新闻生产的方式将逐渐被颠覆。过去依靠专业记者生产内容(PGC)的手工模式,继走向“专业生产+用户生产”(PGC+UGC)的Web2.0模式后,又将走向Web3.0新阶段:算法生成内容(AAC),与PGC和UGC三者鼎立。
新华社副社长刘思扬6月在圣彼得堡国际经济论坛讨论人工智能对新闻业影响时认为,未来人工智能至少会从内容生产和消费两端对媒体发展带来变革。人工智能与物联网、大数据深度结合,将催生真正意义上的“精准媒体”,在图像识别、视频处理、跨文本翻译、数据库激活等领域,推动媒体融合快速发展。
短期而言,体育报道、财经报道、房地产分析报告、民意调查、市场调研报告等比较容易实现标准化生产的领域,人工智能的应用迅速普及推广。
二、人工智能带来全新的议题设置
传统媒体的议题设置,主要取决于当时的新闻热点、宣传管理部门的指令、媒体同行的选择和编辑记者的经验。但是,人工智能技术出现后,媒体议题设置和编排分发的旧有规则被打破了。算法推荐新闻,以及受众之间的相互推荐,逐渐开始争夺内容分发的主导权。
人工智能技术的核心是数据挖掘。媒体的受众分析将比以往更精准,内容的聚合与分发,将更加精准化、智能化、对象化、个性化。通过大数据挖掘技术、个人信息行为追踪,新闻机构可以做到为用户智能推荐,实现个性化的新闻定制。全球新闻生产从人工整合向技术整合的趋势愈加明显,人工智能向传媒领域进军已成潮流。人工智能技术宣告了个性化新闻时代的全面到来。针对每个订阅用户的专属评论和定制化报道,已经成为现实。
首先,人工智能技术使得“用户画像”更清晰,可以为用户量身定做内容。过去,“一点对多点”的、千篇一律的生产模式将转变为个性化、对象化、差异化的内容生产模式。大数据技术可以对受众进行详尽的统计分析。“你在看手机时,手机也在看着你”,互联网巨头悄然地收集着用户所有行为数据——除一般性的用户数据(如性别、年龄、地域分布、情感倾向、注意力偏好、行为喜好、渠道偏好、消费能力、生活轨迹、关系圈、终端匹配等),还有产品数据(如产品形态、产品资费、渠道、品牌、类型和终端要求等),以及网络能力数据(如网络功能、利用率、效率等)。新闻客户端“一点资讯”的创始人郑朝晖曾坦言:“比阅读重要的是阅读者的行为”。
其次,人工智能技术可以为受众进行场景化适配,这是传统议题设置望尘莫及的。在不同时段、不同地理位置,用户对新闻的需求都不同,机器人可以在后台实时调整。如此,就不会出现将传统媒体内容照搬到PC端,PC端内容复制到手机端,将白天信息需求视为和夜晚等同的窘境。
与场景时代相关的有五大因素:大数据、移动设备、社交媒体、传感器和定位系统,它们都和内容生产关联起来。“从哪来—现在哪—去哪里”三个阶段,用户接收的内容都不一样。如受众走路或运动时,可以通过谷歌眼镜、智能手环等可穿戴设备,接收短小精悍的突发新闻;受众在等车候机时,可以通过手机接收碎片化、趣味化的内容,受众在临睡前,可以接收娱乐类、情感类的内容。
最后,人工智能技术使媒体更加社交化,更加注重对社交媒体数据的收集和挖掘。对媒体来说,没有大数据,一切都将成为无源之水、无本之木。未来媒体的竞争力,取决于其数据挖掘的能力,而非简单的叙事能力。过去的议题设置,片面追求新闻热点,忽略多元化用户的需求。而人工智能时代的内容选择,取决于兴趣引擎以及长尾理论。今日头条的竞争对手“一点资讯”也深谙此道。它通过微博绑定,推测出用户的兴趣爱好。用户使用时间越久,基于兴趣引擎的媒介工具会越来越懂用户,在频道内容和排序上会更符合其胃口。
三、传统媒体如何应对人工智能(简答题/论述题的最爱)
首先,传统媒体不能一味沉溺于“内容为王”的路径依赖,而要考虑“内容+技术+渠道+市场+人才”的全产业链运作。片面强调“内容为王”,对科技发展视而不见,最终会导致传统媒体的彻底边缘化,丧失主流舆论阵地。
其次,传统媒体除了培养“全能型记者”,还要引进软件算法工程师。一方面,媒体需要复合型的人才队伍,需要记者掌握多元化的知识结构,使其除了必备传统“报台网”的采访、编辑和写作技巧,懂得文字、图片、音频、视频的制作技能,还要懂得微博、微信、客户端等新媒体平台的发稿流程。另一方面,媒体队伍需要专门的算法工程师。媒体队伍的知识结构,不能局限于中文、新闻、传播等文科领域,还需要大量的IT人才,满足TMT、ICT的融合趋势。
第三,面对人工智能技术的步步紧逼,传统媒体不能画地为牢,需要打破藩篱,既要开展传统媒体与新媒体的一体化运营,也要做好内容集成服务商,在媒体聚合平台安营扎寨(如媒体公众运营号),还可以主动聚合自媒体(如发起自媒体联盟),实现平台共享。
历年真题梳理
简答题:机器人写作适用于哪些报道领域?(2017年南京大学新闻与传播334)
分析题:根据2016年新浪未来媒体峰会提出的:未来媒体十大趋势,即用户体验技术、大数据、新内容时代、流媒体、手机应用、虚拟现实和增强现实共舞、创客文化、货币化、新平台、人工智能与机器人写作,分析媒体的未来趋势对新闻媒介的影响。(2017年中国传媒大学专硕334)
相关论文拓展
智媒化:未来媒体浪潮——新媒体发展趋势报告(2016)—彭兰《国际新闻界》(拓展阅读)
人工智能技术对新闻生产的影响与再造—梁智勇、郑俊婷《中国记者》(深度阅读)
智能化:未来传播模式创新的核心逻辑—兼论“人工智能+媒体”的基本运作范式—喻国明、兰美娜、李玮《新闻与写作》(深度细读)
试论人工智能技术范式下的传媒变革与发展——一种对于传媒未来技术创新逻辑的探析—喻国明、姚飞《新闻界》(深度细读)