抗PD-1联合曲美替尼抑制肿瘤生长并提高小鼠肝内胆管癌的存活率</font></font>
背景与目标
方法
结果
结论
图形概要
关键词
本文中使用的缩写:
IC50(中值抑制浓度)、iCCA(肝内胆管癌)、ICI(免疫检查点抑制剂)、IFNγ(γ干扰素)、KRASwt(KRAS野生型)、MHC-1(主要组织相容性复合物)、PBS(磷酸盐缓冲盐水) 、PD-1(程序性细胞死亡蛋白1)、PD-L1(程序性细胞死亡配体1)、WES(全外显子组测序))
,
iCCA 的全球发病率约为每 100,000 人 1.6 例。
尽管大多数 iCCA 病例发生在没有危险因素的个体中,但可识别的危险因素包括丙型肝炎病毒感染、酒精性肝病、炎症性肠病和原发性硬化性胆管炎。
手术切除是 iCCA 的主要根治性治疗方法,但仅有 20%~40% 的患者适合手术切除。
对于不可切除的早期疾病患者和对新辅助治疗有反应的患者,肝移植都是一种潜在的选择,
但许多患者不符合标准。如果疾病无法手术但仍存在肝内,可以使用局部治疗,例如射频消融或经动脉化疗栓塞。
不可切除疾病的全身治疗以吉西他滨为基础,但疗效有限,中位生存期仅为 12 个月。
最近,免疫检查点抑制剂 (ICIs) 在肝细胞癌患者中显示出有希望的结果,但 ICIs 在 iCCA 中的作用在很大程度上是未知的。
,
正如 Loeuillard 等人在一篇评论中所讨论的那样,
ICI 单一疗法对大多数 iCCA 患者的疗效有限,并且正在进行研究以探索它们与局部疗法、免疫微环境调节剂和分子靶向疗法的潜在组合。
突变的 KRAS 导致 MEK(丝裂原活化蛋白激酶/ERK 激酶)蛋白的持续下游活性。MEK抑制剂,如trametinib和cobimetinib,被批准用于治疗BRAF突变的黑色素瘤和非小细胞肺癌,
,
并且正在许多其他癌症类型中进行研究,包括胆道癌。最近的一项小鼠研究表明,KRAS 野生型 (KRASwt) 肿瘤也通过调节肿瘤微环境对 MEK 抑制产生反应。
总之,MEK 抑制剂和 ICI 单一疗法在 iCCA 中没有显示出广泛的疗效。
尽管如此,目前尚无关于在 iCCA 中 MEK 抑制剂和 ICI 联合治疗的数据,但 2 项临床试验正在进行中,将 ICI 和 MEK 抑制剂联合用于不可切除的晚期胆道癌(NCT02586987 和 NCT03201458)。
结果
曲美替尼治疗直接抑制体外和体内肿瘤生长
因此,体外结果促使我们研究曲美替尼治疗是否会减少体内 iCCA 肿瘤的生长。皮下注射SB1或LD-1肿瘤细胞,并在肿瘤形成5天后开始曲美替尼治疗。通过每日管饲法用 1 mg/kg 曲美替尼治疗小鼠 15 天,并监测肿瘤生长(图1G)。与体外结果一致,trametinib处理导致显著减少肿瘤生长与控制SB1(比较图1 ħ)和LD-1(图1我)胁腹肿瘤。我们的结果清楚地表明,曲美替尼可以减少 iCCA 肿瘤的生长,即使在体外 KRASwt 细胞系中也是如此。
曲美替尼治疗上调肿瘤细胞表面的 MHC-I 和 PD-L1
抗 PD-1 治疗增强了曲美替尼的抗肿瘤免疫反应
抗 PD-1 + 曲美替尼的组合促进 T 细胞的激活
SB1 是 KRASwt 并显示出与 iCCA 患者亚群相似的突变特征
讨论
,
就在最近,由于在比较这种抗 PD-L1 + 抗血管内皮生长因子治疗方案与索拉非尼的 3 期试验中取得了有希望的结果,不可切除的肝细胞癌的一线治疗从索拉非尼改为阿特珠单抗加贝伐珠单抗。
由于存在大量免疫细胞的肝脏的耐受性景观,免疫治疗特别具有挑战性。
因此,对于 iCCA 患者,仍然没有可用的 ICI 疗法,选择有效的联合合作伙伴可能是提高 ICI 疗效的有希望的策略。
该剂量的单一疗法在体外显示出对肿瘤细胞的适度生长抑制。然而,小鼠中的 LD-1 和 SB1 侧腹肿瘤显示对曲美替尼治疗的强烈反应。有趣的是,当停止曲美替尼治疗时,我们观察到肿瘤生长加速,导致单独使用曲美替尼治疗的组没有生存获益。这与最近的一项临床试验一致,该试验表明曲美替尼治疗胆道癌没有提高生存率。
我们假设曲美替尼对提高其免疫原性的肿瘤细胞有直接作用。事实上,曲美替尼治疗在体外增加了肿瘤细胞上的 MHC-1 和 PD-L1 表面表达。因此,我们推断添加靶向 PD-1/PD-L1 轴的单克隆抗体可以增强这种疗法。事实上,联合治疗显着提高了携带 SB1 侧腹肿瘤的小鼠的存活率。
在我们的研究中,我们观察到曲美替尼治疗的小鼠的 CD8 T 细胞的脱颗粒和 IFNγ 产生类似的趋势,尽管这没有达到统计显着性。然而,曲美替尼的这种免疫抑制作用在联合治疗组中被逆转。此外,抗 PD-1 + 曲美替尼增加了效应记忆 T 细胞的百分比,并改善了体外 SB1 荷瘤小鼠CD4 + T 细胞对 SB1 肿瘤细胞的重新识别。我们的结果表明,抗 PD-1 + 曲美替尼的组合可释放免疫系统,并代表了 iCCA 患者的潜在治疗方法。
,
但可以在精心挑选的患者中提供长期消退。因此,我们对 SB1 肿瘤细胞进行了 WES,以显示该细胞系与 iCCA 患者亚群的突变相似性。事实上,与 SB1 细胞相比,我们能够识别出具有相似突变模式的亚群。该亚群的特点是生存率低。此外,WES 显示 SB1 细胞没有发生KRAS、BRAF和ERK突变。这项研究的局限性在于我们没有使用 KRAS mut iCCA 细胞系来展示这种疗法对 KRAS mut iCCA 患者的特定益处。据我们所知,没有 KRAS mut提供 iCCA 细胞系。然而,我们相信我们的结果显示了对 iCCA 患者的有希望的治疗,尤其是与 SB1 细胞具有相似突变模式的患者。
方法
小鼠品系、试剂和细胞系
和 LD-1,以及人 CAA 细胞系 EGI-1,
本研究中使用。LD-1
是在我们的实验室建立的,是从小鼠体内注射 AKT 和 YAP 质粒后衍生而来的。LD-1 和 SB1 的 WES 数据将根据要求提供。
动物研究
SB1 肿瘤的 CK19 染色证实了 CCA 表型(图4B)。小鼠的处理如前所述。对于 Notch 胞内结构域 1 (NICD) + AKT iCCA,将 20 μg NICD、4 μg AKT 和 1 μg 多动睡美人 2 转座酶质粒稀释到 1.6 mL PBS 中,并在 5-7 秒内注入尾静脉。
注射后 5 周开始治疗,如载体对照(生理盐水)、每日灌胃 1 mg/kg 曲美替尼或 200 μg 抗 PD-1(第 37、40 和 45 天),以及抗 PD 的组合-1 和曲美替尼。注射后第50天处死小鼠。使用 Aperio AT2 数字全玻片扫描仪(Leica Biosystems,Wetzlar,德国)以 20 倍物镜放大率扫描 H&E 染色切片。使用 HALO 图像分析软件 (Indica Labs, Albuquerque, NM) 使用肿瘤区域和正常肝组织区域的模式识别图像分析进行自动量化。
SB1 WES
然后使用 Picard 工具(Broad Institute,Cambridge,MA)对映射读数进行去重复,然后使用 Genome Analysis Toolkit(Broad Institute)3.8.0 版重新对齐和基础质量分数重新校准。
测序运行产生了 6170 万个总读数,>99% 映射到参考基因组,平均外显子组覆盖率为 69 倍。SB1 的测序数据上传为序列读取存档 (SRA) 提交 SRR13091994,BioProject 登录号 PRJNA679801。
体细胞变异分析
变体经过质量硬过滤,使用 Ensembl 的 Variant Effect Predictor 版本 95(Ensemble,Hinxton,UK)用功能和后果预测进行注释,
并使用 vcf2maf 工具版本 1.6.16(纪念斯隆凯特琳,纽约,纽约)转换为 Mutation Annotation 格式。
常见的单核苷酸多态性和插入缺失——在 ExAC(Broad 研究所)、gnomAD(Broad 研究所)或 1000 Genomes(欧洲生物信息学研究所,英国欣克斯顿)数据库中注释的频率大于 0.01——也被删除。此外,SB1 细胞系数据中小于 20 倍深度和替代等位基因频率小于 5% 的变体被删除。
突变特征分析
(版本 2.12.6)。对于每个变异位点,从基因组序列中提取相邻的 5' 和 3' 碱基以使用 Maftools 生成三核苷酸替换频率
(版本 2.0.16)。该矩阵用于使用 NMF 包计算所有 50 个 TCGA-CHOL 样本的共识签名
(版本 0.23.0)。如 Brunet 等人所述,通过比较 3 到 10 个签名的共表相关性来优化签名的数量,
并且选择了 5 个签名作为最佳签名数(图 6 E)。使用 MutationalPatterns(Bioconductor, Fred Hutchinson Cancer Research Cener, Seattle, WA)计算这 5 个特征(特征 A-E)在每个样本的个体特征中的贡献
(版本 1.10.0)。
生存分析
(版本 3.2-7),并使用 survminer 进行可视化
(版本 0.4.8)。
体外肿瘤细胞活力测定、增殖测定和抗原分析
CD107 脱粒试验
流式细胞术
统计分析
CRediT 作者贡献
致谢
参考
- 胆管癌。
柳叶刀。 2014; 383 : 2168-2179
在文章中查看 拉祖米拉娃 N.
戈尔斯GJ
- 肝内和肝外胆管癌死亡率的全球趋势。
J肝素。 2019;71 : 104-114
在文章中查看 贝尔图西奥 P.
马尔维齐 M.
卡里奥里 G。
哈希姆 D.
波菲塔 P.
埃尔塞拉格HB
拉维奇亚 C.
内格里 E.
- 美国胆管癌发病率和流行率的性别特异性和种族/民族特异性差异:2000-2011 年监测、流行病学和最终结果登记处的最新分析。
Hepatol Res。 2016; 46 : 669-677
在文章中查看 摩萨德吉 S.
刘 B.
布吉T。
黄荣仁
- 胆道癌。
N Engl J Med。 1999年;341 : 1368-1378
在文章中查看 德格罗恩电脑
戈尔斯GJ
拉鲁索NF
甘德森
纳戈尔尼DM
- 肝内胆管癌的外科治疗——一项基于人群的研究。
Ann Surg Oncol。 2008年;15 : 600-608
在文章中查看 谭俊才
科伯恩
巴克斯特神经网络
吻A。
法学
- 肝内胆管癌的肝切除和移植。
J肝素。 2020 年;72 : 364-377
在文章中查看 马扎费罗 V.
戈尔根 A.
罗亚伊 S.
Droz Dit Busset M.
Sapisochin G.
- 肝内胆管癌的诊断和治疗指南。
J肝素。 2014; 60 : 1268-1289
在文章中查看 布里奇沃特 J。
加勒公关
汗萨
洛维特 JM
朴俊伟
帕特尔 T。
帕利克TM
戈尔斯GJ
- 基于免疫方法治疗胆道癌的案例。
肝病学。 2016; 64 : 1785-1791
在文章中查看 达菲股份公司
Makarova-Rusher OV
格林特遣队
- nivolumab 用于晚期难治性胆道癌患者的 2 期多机构研究。
JAMA肿瘤学杂志。 2020 年;6 : 888-894
在文章中查看 金路
钟 V。
转播
El-Rayes BF
李德.
阿尔图巴 TE
谢尔MJ
周建民
马希帕尔 A.
金宝华
金德伟
- Immunobiology of cholangiocarcinoma.
JHEP Rep. 2019; 1: 297-311
View in Article 勒厄尔 E.
Conboy C.B.
Gores G.J.
Rizvi S.
- Genomic spectra of biliary tract cancer.
Nat Genet. 2015; 47: 1003-1010
View in Article Nakamura H.
Arai Y.
Totoki Y.
Shirota T.
Elzawahry A.
Kato M.
Hama N.
Hosoda F.
Urushidate T.
Ohashi S.
Hiraoka N.
Ojima H.
Shimada K.
Okusaka T.
Kosuge T.
Miyagawa S.
Shibata T.
- MEK inhibitors under development for treatment of non-small-cell lung cancer.
Expert Opin Investig Drugs. 2018; 27: 17-30
View in Article Kim C.
Giaccone G.
- The systemic management of advanced melanoma in 2016.
Oncol Res Treat. 2016; 39: 635-642
View in Article Heppt M.V.
Dietrich C.
Graf S.A.
Ruzicka T.
Tietze J.K.
Berking C.
- MEK inhibition suppresses K-Ras wild-type cholangiocarcinoma in vitro and in vivo via inhibiting cell proliferation and modulating tumor microenvironment.
Cell Death Dis. 2019; 10: 120
View in Article Wang P.
Song X.
Utpatel K.
Shang R.
Yang Y.M.
Xu M.
Zhang J.
Che L.
Gordan J.
Cigliano A.
Seki E.
Evert M.
Calvisi D.F.
Hu X.
Chen X.
- Current insights into combination therapies with MAPK inhibitors and immune checkpoint blockade.
Int J Mol Sci. 2020; 21: 2531
View in Article Shin M.H.
Kim J.
Lim S.A.
Kim J.
Lee K.M.
- Emerging opportunities and challenges in cancer immunotherapy.
Clin Cancer Res. 2016; 22: 1845-1855
View in Article Whiteside T.L.
Demaria S.
Rodriguez-Ruiz M.E.
Zarour H.M.
Melero I.
- Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma.
N Engl J Med. 2020; 382: 1894-1905
View in Article Finn R.S.
Qin S.
Ikeda M.
Galle P.R.
Ducreux M.
Kim T.Y.
Kudo M.
Breder V.
Merle P.
Kaseb A.O.
Li D.
Verret W.
Xu D.Z.
Hernandez S.
Liu J.
Huang C.
Mulla S.
Wang Y.
Lim H.Y.
Zhu A.X.
Cheng A.L.
- Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells.
Cell Mol Immunol. 2021; 18: 112-127
View in Article Ruf B.
Heinrich B.
Greten T.F.
- Publisher correction: protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers.
Nat Med. 2019; 25: 861
View in Article Kinsey C.G.
Camolotto S.A.
Boespflug A.M.
Guillen K.P.
Foth M.
Truong A.
Schuman S.S.
Shea J.E.
Seipp M.T.
Yap J.T.
Burrell L.D.
Lum D.H.
Whisenant J.R.
Gilcrease 3rd, G.W.
Cavalieri C.C.
Rehbein K.M.
Cutler S.L.
Affolter K.E.
Welm A.L.
Welm B.E.
Scaife C.L.
Snyder E.L.
McMahon M.
- Efficacy and safety of trametinib in Japanese patients with advanced biliary tract cancers refractory to gemcitabine.
Cancer Sci. 2018; 109: 215-224
View in Article Ikeda M.
Ioka T.
Fukutomi A.
Morizane C.
Kasuga A.
Takahashi H.
Todaka A.
Okusaka T.
Creasy C.L.
Gorman S.
Felitsky D.J.
Kobayashi M.
Zhang F.
Furuse J.
- MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells.
Cancer Immunol Res. 2014; 2: 351-360
View in Article Vella L.J.
Pasam A.
Dimopoulos N.
Andrews M.
Knights A.
Puaux A.L.
Louahed J.
Chen W.
Woods K.
Cebon J.S.
- PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response?.
Front Immunol. 2017; 8: 1597
View in Article Xu-Monette Z.Y.
Zhang M.
Li J.
Young K.H.
- Immune checkpoint inhibitors in hepatocellular carcinoma: opportunities and challenges.
Oncologist. 2019; 24: S3-S10
View in Article Liu X.
Qin S.
- YAP-associated chromosomal instability and cholangiocarcinoma in mice.
Oncotarget. 2018; 9: 5892-5905
View in Article Rizvi S.
Fischbach S.R.
Bronk S.F.
Hirsova P.
Krishnan A.
Dhanasekaran R.
Smadbeck J.B.
Smoot R.L.
Vasmatzis G.
Gores G.J.
- The in vitro interaction of alpha-difluoromethyl ornithine (DFMO) and several interferons on human cell lines.
J Biol Response Mod. 1985; 4: 391-395
View in Article Wolf L.M.
Leitzel K.E.
Pegg A.E.
Harvey H.A.
Lipton A.
- Gut microbiome directs hepatocytes to recruit MDSC and promote cholangiocarcinoma.
Cancer Discov. 2021; 11: 1248-1267
View in Article Zhang Q.
Ma C.
Duan Y.
Heinrich B.
Rosato U.
Diggs L.P.
Ma L.
Roy S.
Fu Q.
Brown Z.J.
Wabitsch S.
Thovarai V.
Fu J.
Feng D.
Ruf B.
Cui L.L.
Subramanyam V.
Frank K.M.
Wang S.
Kleiner D.E.
Ritz T.
Rupp C.
Gao B.
Longerich T.
Kroemer A.
Wang X.W.
Ruchirawat M.
Korangy F.
Schnabl B.
Trinchieri G.
Greten T.F.
- Establishment of orthotopic liver tumors by surgical intrahepatic tumor injection in mice with underlying non-alcoholic fatty liver disease.
Methods Protoc. 2018; 1: 21
View in Article Brown Z.J.
Heinrich B.
Greten T.F.
- Cholangiocarcinomas can originate from hepatocytes in mice.
J Clin Invest. 2012; 122: 2911-2915
View in Article Fan B.
Malato Y.
Calvisi D.F.
Naqvi S.
Razumilava N.
Ribback S.
Gores G.J.
Dombrowski F.
Evert M.
Chen X.
Willenbring H.
- Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009; 25: 1754-1760
View in Article Li H.
Durbin R.
- The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010; 20: 1297-1303
View in Article McKenna A.
Hanna M.
Banks E.
Sivachenko A.
Cibulskis K.
Kernytsky A.
Garimella K.
Altshuler D.
Gabriel S.
Daly M.
DePristo M.A.
- From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
Curr Protoc Bioinformatics. 2013; 43: 11.10.1-11.10.33
View in Article Van der Auwera G.A.
Carneiro M.O.
Hartl C.
Poplin R.
Del Angel G.
Levy-Moonshine A.
Jordan T.
Shakir K.
Roazen D.
Thibault J.
Banks E.
Garimella K.V.
Altshuler D.
Gabriel S.
DePristo M.A.
- The Ensembl variant effect predictor.
Genome Biol. 2016; 17: 122
View in Article McLaren W.
Gil L.
Hunt S.E.
Riat H.S.
Ritchie G.R.
Thormann A.
Flicek P.
Cunningham F.
- vcf2maf.
(Available from:)
https://github.com/mskcc/vcf2mafDate: 2013(Accessed August 22, 2020)
View in Article Memorial Sloan Kettering Cancer Center
- FLAGS, frequently mutated genes in public exomes.
BMC Med Genomics. 2014; 7: 64
View in Article Shyr C.
Tarailo-Graovac M.
Gottlieb M.
Lee J.J.
van Karnebeek C.
Wasserman W.W.
- TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res. 2016; 44: e71
View in Article Colaprico A.
Silva T.C.
Olsen C.
Garofano L.
Cava C.
Garolini D.
Sabedot T.S.
Malta T.M.
Pagnotta S.M.
Castiglioni I.
Ceccarelli M.
Bontempi G.
Noushmehr H.
- Maftools: efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 2018; 28: 1747-1756
View in Article Mayakonda A.
Lin D.C.
Assenov Y.
Plass C.
Koeffler H.P.
- A flexible R package for nonnegative matrix factorization.
BMC Bioinformatics. 2010; 11: 367
View in Article Gaujoux R.
Seoighe C.
- Metagenes and molecular pattern discovery using matrix factorization.
Proc Natl Acad Sci U S A. 2004; 101: 4164-4169
View in Article Brunet J.P.
Tamayo P.
Golub T.R.
Mesirov J.P.
- MutationalPatterns: comprehensive genome-wide analysis of mutational processes.
Genome Med. 2018; 10: 33
View in Article Blokzijl F.
Janssen R.
van Boxtel R.
Cuppen E.
- A package for survival analysis in R.
(Available from:)
(Retrieved March 20 2020)
View in Article Therneau T.M.
- survminer: drawing survival curves using 'ggplot2'.
2020
View in Article Kassambara A.
Kosinski M.
Biecek P.
Article Info
Publication History
Publication stage
In Press Journal Pre-Proof
Footnotes
Conflicts of interest The authors disclose no conflicts.
Funding Supported by Deutsche Forschungsgemeinschaft grant WA-4610/1-1 (S.W.), and by the Intramural Research Program of the National Institutes of Health , National Cancer Institute (ZIA BC 011345, ZO1 BC010870) (T.F.G.).
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
ScienceDirect
Figures
- Graphical Abstract
- Figure 1Trametinib decreases tumor growth in vitro and in vivo. In vitro tumor cell growth of (A) EGI-1 (n = 8), (B) SB1 (n = 8), (C) LD-1 (n = 4), and with trametinib treatment for 48 hours. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT) assay was used to measure cell viability. In vitro cell growth of (D) EGI-1, (E) SB1, and (F) LD-1 cells treated with or without 25 nmol/L trametinib treatment for 48 hours using the xCELLigence RTCA system (n = 3 per group). (G) Experimental set-up: C57BL/6 mice with subcutaneous injection of 106 SB1 or LD-1 cells treated with trametinib as indicated by daily gavage. (H and I) In vivo tumor growth of subcutaneous (A) SB1 and (B) LD-1 tumors over time. Two groups are shown: control (n = 5) vs trametinib treatment (n = 4). Tumor growth is shown as the largest tumor diameter in millimeters. Data represent means ± SD. ∗∗P < .01, ∗∗∗P < .001, ; Student t test. OD, optical density.
- Figure 2Trametinib increases surface expression of MHC-I on iCCA tumor cell lines. Median fluorescence intensity (MFI) of surface (A) MHC-I and (B) PD-L1 expression of SB1 cells treated with 25 nmol/L trametinib for 24 hours measured by flow cytometry (n = 7 per group). (C) Representative histogram plots of surface MHC-I (left section) and PD-L1 (right section) expression on SB1 cells after 25 nmol/L trametinib (red) treatment vs control (blue) for 24 hours. MFI of surface (D) MHC-I and (E) PD-L1 expression of LD-1 cells treated with 25 nmol/L trametinib for 24 hours measured by flow cytometry (n = 7 per group). (F) Representative histogram plots of surface MHC-I (left section) and PD-L1 (right section) expression on LD-1 cells after 25 nmol/L trametinib (red) treatment vs control (blue) for 24 hours. MFI of surface (G) MHC-I and (H) PDL-1 expression of EGI-1 cells treated with 25 nmol/L trametinib for 24 hours measured by flow cytometry (n = 7 per group). (F) Representative histogram plots of surface MHC-I (left section) and PD-L1 (right section) expression on EGI-1 cells after 25 nmol/L trametinib (red) treatment vs control (blue) for 24 hours. Data represent means ± SD. ∗P < .05, and ∗∗∗∗P < .0001; Student t test.
- Figure 3Trametinib in combination with anti–PD-1 improves survival of mice with subcutaneous SB1 tumors. (A) Experimental set-up: C57BL/6 mice with a subcutaneous injection of 106 SB1 or LD-1 cells treated with trametinib by daily gavage and received anti–PD-1 (200 μg/mouse at indicated time points). (B) Representative pictures of subcutaneous SB1 (left section, n = 5) and LD-1 (right section, n = 5) tumors. Experimental set-up is shown in Figure 3A. Tumor growth of subcutaneous (C) SB1 and (D) LD-1 flank tumors over time. Four groups are shown: control (n = 5) vs trametinib treatment (n = 4) vs anti–PD-1 (anti–PD-1, n = 5) treatment vs combination (Trametinib + anti–PD-1, n = 5). Tumor growth is shown as the largest tumor diameter in millimeters. Tumor weights of subcutaneous (E) SB1 and (F) LD-1 tumors. Experimental set-up is shown in Figure 3A. Survival of mice with subcutaneous (G) SB1 and (H) LD-1 tumors over time (n = 5 per group), log-rank test. Data represent means ± SD. ∗P < .05, ∗∗P < .01, ∗∗∗P < .001, and ∗∗∗∗P < .0001; Student t test. aPD-1, anti-Programmed cell death protein-1.
- Figure 4Trametinib in combination with anti–PD-1 controls tumor growth in orthotopic iCCA models. (A) Experimental set-up: C57BL/6 mice with intrahepatic injection of 2 × 105 SB1 cells treated with trametinib by daily gavage and received anti–PD-1 (200 μg/mouse at the indicated time points). (B) Representative images of CK19 staining (upper section) and H&E staining (lower section) of intrahepatic SB1 tumors. Scale bar: 500 μm. (C) Representative pictures of intrahepatic SB1 tumors. Experimental set-up is shown in Figure 4A. (D) Tumor weights (g) of intrahepatic SB1 tumors. Experimental set-up is shown in Figure 4A. (E) Survival of mice with intrahepatic SB1 tumors over time (n = 5 per group), log-rank test. (F) Experimental set-up: C57BL/6 mice with hydrodynamic tail vein injection of NICD + AKT plasmid injection treated with trametinib by daily gavage and received anti–PD-1 (200 μg/mouse at the indicated time points). (G) Whole slide scan of a representative H&E stain (sections on the left) of a murine iCCA-bearing liver and tissue section after image analysis using HALO Random Forrest Classifier function (Indica Labs, Albuquerque, NM) and shown as a digital overlay indicating areas classified as tumor (red) and remaining normal liver (green). Scale bar: 1 mm. (H) Tumor to liver tissue ratio after NICD + AKT injection (n = 4 per group) corresponding to Figure 4F. Experimental set-up is shown in Figure 4A. (I) Weight of mice after treatment. Experimental set-up is shown in Figure 4E. (I) Alanine aminotransferase (ALT), (J) aspartate aminotransferase (AST), (K) alkaline phosphatase, and (L) albumin serum levels after treatment. Experimental set-up is shown in Figure 4A. Data represent means ± SD. ∗P < .05, ∗∗P < .01; Student t test. aPD-1, anti-Programmed cell death protein-1; T, trametinib.
- Figure 5Trametinib + anti–PD-1 therapy unleashes the immune system against iCCA tumors. (A) Representative contour plot of CD4+ and CD8+ gating strategy of hepatic lymphocytes of orthotopic SB1 tumor-bearing mice after treatment. Experimental set-up is shown in Figure 4A. Percentage of hepatic (B) CD44highCD62Llow CD8+ and (C) CD4+ effector memory T cells after intrahepatic SB1 injection (n = 5 per group). Experimental set-up is shown in Figure 4A. (D) Representative contour plot and frequencies of CD44highCD62Llow CD8+ effector memory T cells of hepatic lymphocytes of orthotopic SB1 tumor-bearing mice after treatment (gating strategy CD3+CD8+). Experimental set-up is shown in Figure 4A. (E) Percentage and (F) representative contour plot and frequencies of CD107+CD8+ T cells of hepatic lymphocytes of orthotopic SB1 tumor-bearing mice after treatment (gating strategy CD3+CD8+) after ex vivo stimulation for 4 hours (n = 5 per group). Experimental set-up is shown in Figure 4A. (G) Percentage and (H) representative contour plot and frequencies of IFNγ+CD8+ T cells of hepatic lymphocytes of orthotopic SB1 tumor-bearing mice after treatment (gating strategy CD3+CD8+) after ex vivo stimulation for 4 hours (n = 5 per group). Experimental set-up is shown in Figure 4A. (I) Percentage and (J) representative contour plot and frequencies of CD107+CD4+ T splenocytes from SB1 flank-tumor-bearing mice after ex vivo stimulation with SB1 tumor cells for 5 hours (n = 5 per group). Group set-up is shown as in Figure 3A. Data represent means ± SD. ∗P < .05, ∗∗P < .01; Student t test. aPD-1, anti-Programmed cell death protein-1; FSC-A, forward scatter area; FSC-H, forward scatter high; L/D, live/dead; SSC,side scatter; T, trametinib.
- Figure 6WES of SB1 tumor cells. (A) Summary of mutation number and type from WES of the SB1 cell line. (B) Lollipop plots for Afg3I1, Grik2, Kmt2C, and Akt1 showing a schematic of each protein with protein domains from PFAM (protein family database) highlighted in colored blocks. Location of mutations is annotated with pins along the length of the protein. (C) Single-base substitution (SBS) signature of SB1 cell line. Each of the 6 mutation classes, as indicated at the top of the panel, is separated into 16 categories based on the identity of the preceding and following nucleotide as shown below. (D) SBS signatures for the 5 consensus signatures (Signature A–E) derived from TCGA-CHOL, arranged in rows. (E) Diagnostic plots for NMF rank survey. Cophentic correlation (top-left) was used to determine the optimal rank (five). AAA, ATPases associated woth diverse cellular activities; ATPase, adenosine triphosphatase; Del, deletion; F/Y, phenylalanin/tyrosine; NMF, non-negative matrix factorisation; PHD, plant homeodomain; SET, suvar3-9, enhancer-of-zeste and trithorax.