光学测距的ToF技术

超声波测距、红外线测距在感测市场上活跃着,但是随着人们对于光的熟识,光学测距逐渐开始占据感测市场,激光测距就是其中主要的研究方向之一。利用ToF原理创造了FlightSenseTM技术,推出了飞行时间(ToF)传感器。

StarForm,世界上分辨率最高的TOF相机

ToF技术

TOF是飞行时间(TIme of Flight)技术的缩写,即传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息,此外再结合传统的相机拍摄,就能将物体的三维轮廓以不同颜色代表不同距离的地形图方式呈现出来。

不论是自动驾驶,还是VR;亦或是现在市面上层出不穷的平衡车,都离不开ToF技术。

TOF测量原理

发射的红外光线被被测物体反射后回到传感器,内置的计时器记录其来回时间,然后即可计算出其距离。听起来好像和大家玩烂了的超声波测距没啥不同。但其实不然,超声波测距对反射物体要求比较高,面积小的物体,如线、锥形物体就基本测不到,而TOF红外测距完全可克服此问题,同时TOF测距精度高,测距远,响应快。

这种技术跟3D激光传感器原理基本类似,只不过3D激光传感器是逐点扫描,而TOF相机则是同时得到整幅图像的深度信息。

TOF的优势

与立体相机或三角测量系统比,TOF相机体积小巧,跟一般相机大小相去无几,非常适合于一些需要轻便、小体积相机的场合。

TOF相机能够实时快速的计算深度信息,达到几十到100fps。TOF的深度信息。而双目立体相机需要用到复杂的相关性算法,处理速度较慢。

TOF的深度计算不受物体表面灰度和特征影响,可以非常准确的进行三维探测。而双目立体相机则需要目标具有良好的特征变化,否则会无法进行深度计算。

TOF的深度计算精度不随距离改变而变化,基本能稳定在cm级,这对于一些大范围运动的应用场合非常有意义。

3D 深度摄像技术的方案比较

TOF 只是 3D 深度摄像技术中的一种方案。目前主流的 3D 深度摄像主流有三种方案:结构光、TOF、双目成像。

结构光(Structured Light):

结构光投射特定的光信息到物体表面后,由摄像头采集。根据物体造成的光信号的变化来计算物体的位置和深度等信息,进而复原整个三维空间。(苹果iPhone X 用的就是这个方案)

TOF(Time Of Flight):

TOF 系统是一种光雷达系统,可从发射极向对象发射光脉冲,接收器则可通过计算光脉冲从发射器到对象,再以像素格式返回到接收器的运行时间来确定被测量对象的距离。

双目成像(Stereo System):

利用双摄像头拍摄物体,再通过三角形原理计算物体距离。

这三种方案中,双目测距成像因为效率低、算法难、精度差、容易受到环境因素干扰;TOF 方案同样有精度缺陷,传感器体积小型化之后对分辨率影响大。

ToF技术的应用

汽车电子

在汽车应用中,ToF可以被用于自动驾驶、防撞自动刹车和OOP等等。

Infineon与科世达推出的基于英飞凌3D图像传感器芯片的摄像头驾驶员辅助系统。

在飞行时间(ToF)原理支持下,该系统可精确检测驾驶员身体和头部位置,甚至在其戴眼镜或太阳镜的情况下捕获其眨眼动作,以判断驾驶员是否注意力足够集中、是否正疲劳驾驶,从而启动相应对策。譬如,通过振动座椅或警告音。驾驶员注意力越不集中,汽车就越会提起注意。为了快速和准确地做出响应,辅助系统和紧急制动系统可在潜在紧急情况发生之前自动激活。

英飞凌3D图像传感器芯片

此外,该技术还可以通过手部运动或身体姿势控制车载娱乐系统或车用空调,甚至在车外实现全新的辅助和安全功能,比如开门辅助设备,在停车场或家用地库时防止车门打开后撞上其它车、墙壁或天花板。英飞凌方案设计合作伙伴GesTIgon在大会上现场演示了英飞凌ToF传感器如何实现车用物体跟踪与手势识别,以达到“三维虚拟现实”。

人机界面与游戏 

ToF提供了一种实时的远方影像,所以可以非常简单地用来记录人体动作。这使得许多消费电子类产品(比如电视)有了全新的交互方式,Xbox Kinect二代就是用了这种技术。

Kinect搭载的是Depth的传感器,可以取得Depth数据(和传感器的距离信息)。整个Kinect其实就是一个大蝙蝠,红外投射器不断向外发出红外结构光,就相当于蝙蝠向外发出的声波,红外结构光照到不同距离的地方强度会不一样,如同声波会衰减一样。红外感应器呢,相当于蝙蝠的耳朵,用来接收反馈的消息,不同强度的结构光会在红外感应器上产生不同强度的感应,这样,Kinect就知道了面前物体的深度信息,将不同深度的物体区别开来。

手机自动对焦摄像

以手机自动对焦中使用ToF传感器为例,以往的自动对焦功能通常采用集成在手机图像信号处理器中的一套数据计算方法。当取景器捕捉到最原始的图像后,这些图像数据会被当作原始资料传送至图像信号处理器中,图像信号处理器对原始数据进行分析,检查图像中毗邻像素之间的密度差异,从中挑出最好的那一帧图像即为呈现在我们眼前的照片。而采用了ToF传感器的自动对焦系统,则是通过检测物体与相机之间的距离来进行对焦,减少了相机抓取图像帧数的数量,即使是在弱光下也能够快速清晰地抓取图像。在拍摄视频方面,在两米内的移动均能够进行精准测距并抓取图像。

未来的ToF传感器的测距将加大感测距离,就需要接收器能够检测到更多的光子,除了结构之外还需要光学的辅助,还可通过凹凸透镜抓取更多的光子实现更远距离的光学测距。将会成为实现我们未来智能社会生活环境的最基础的技术之一。

(0)

相关推荐

  • 机器视觉中的3D成像技术

    近年来,机器视觉技术变得越来越复杂,工业领域的图像处理更多的专注于3D传感器,而且越来越多的技术已经完善并且投入到实际应用中,包括焊缝的检测,以及在生产过程中对未分类部件进行仓拣或精确测量金属板.可以 ...

  • ToF传感器又被苹果“玩”了一番,未来前景究竟如何?

    本文来源:物联传媒 本文作者:Vior.Liu 早在今年1月份,笔者就预测光电传感器在2020年将会成为一大重点发展趋势.很巧合的,本次疫情期间恰巧印证了这一点,我们可以看到红外传感器用于测温的大火. ...

  • 没有这枚镜头加持,新机都不好意思自称年度旗舰

    将「雷科技Lite」收藏为我的小程序,不再错过精彩内容 旗舰手机,顾名思义是手机厂商产品线中地位最高.配置最强的产品,是品牌的门面和招牌,是大多数消费者渴望拥有的顶尖产品.时间来到2020年,我们见到 ...

  • 大家都在用的ToF,为何只有苹果敢叫“激光雷达”

    虽然9月16日凌晨苹果的新品发布会中并未带来iPhone 12系列,但对于神通广大的众多消息源来说,iPhone 12系列亮相的推迟似乎并不会影响到他们曝光新品的"本领".比如说日 ...

  • AR未成气候,可ToF还是成为了旗舰手机的标配

    虽然最近这段时间对于苹果而言有点"流年不利"的味道,但不可否认的是,无论是传闻中的全新入门版iPhone 9,还是预计将在秋季登场的新旗舰iPhone 12,至今依然还是整个手机行 ...

  • 三种主流深度相机介绍

    深度相机    01 深度相机又称之为3D相机,顾名思义,就是通过该相机能检测出拍摄空间的景深距离,这也是与普通摄像头最大的区别. 普通的彩色相机拍摄到的图片能看到相机视角内的所有物体并记录下来,但是 ...

  • 3D相机技术 | 立体视觉传感器 TOF相机

    转自 | 睿慕课 文章结构 前言 立体视觉传感器原理简介 工业领域应用 主流立体视觉的产品 TOF相机工作原理 TOF工业领域应用 一些TOF研究机构 1.前言 在机器视觉应用中,物体三维形状的获取变 ...

  • 【视觉】一文了解目前所有的视觉三维重建技术

    视觉/图像重磅干货,第一时间送达 新机器视觉 最前沿的机器视觉与计算机视觉技术 206篇原创内容 公众号 本文摘自于:郑太雄, 黄帅, 李永福, 冯明驰. 基于视觉的三维重建关键技术研究综述. 自动化 ...

  • 苹果的pro到底pro在哪里?LiDAR旧颜裹新妆带你遨游AR新世界

    苹果最近十分看好激光雷达技术,在其2020年发布的iPhone 12 Pro和iPad Pro中都配置有激光雷达传感器(LiDAR).iPhone 12 pro上的 LiDAR基本上可以实现两个重要的 ...

  • 读懂ToF传感器,看这一篇就够了!

    您是否听说过在手机,相机等中使用的飞行时间传感器,也称为ToF传感器,但不知道它们的用途和作用原理? 通过本文,您将了解有关ToF传感器和照相机的所有信息: 什么是飞行时间传感器? 飞行时间传感器如何 ...

  • 大红大紫的ToF传感器,能成为物联网传感器的新宠吗?

    本文来源:物联传媒 本文作者:Vior.Liu ToF传感器火了. 从去年开始,一票传感器厂商和手机厂商的目光都投向了ToF传感器.直到今年,英飞凌.AMS等传感器厂商,以及苹果.华为.三星等手机厂商 ...

  • 3D成像方法--- 双目视觉、激光三角、结构光、ToF、光场

    3D成像方法汇总介绍: 这里要介绍的是真正的3D成像,得到物体三维的图形,是立体的图像. 而不是利用人眼视觉差异的特点,错误感知到的假三维信息. 原理上分类:主要常用有: 1.双目立体视觉法(Ster ...